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ABSTRACT 
 
     As a result of medium coupling, propagation characteristics of ultrasonic waves 
guided by a multi-medium system can be different from those in a homogeneous 
system. This phenomenon becomes prominent for a medium consisting of phases with 
considerably distinct material and physical properties (e.g., submerged structures or 
human bones covered with soft tissues). In the present study, the coupling effect 
arising from both fluid and soft tissues on wave propagation in engineering structures 
and human bone structures was explored and calibrated quantitatively, with a purpose 
of enhancing the precision of ultrasonic-wave-based non-destructive evaluation (NDE) 
and clinical quantitative ultrasound (QUS). Calibration results were used to rectify 
conventional NDE during evaluating corrosion in a submerged aluminum plate, and 
QUS during predicting the simulated healing status of a mimicked bone fracture. The 
results demonstrated that when the coupling effect was appropriately taken into 
consideration, the precision of NDE and QUS could be improved. 
 

 

1. INTRODUCTION 
 
     Propagation of elastic waves in the media comprising multiple phases is of a great 
interest in engineering practice. As a consequence of the medium coupling effect, 
elastic waves can be modulated, to different extents for different wave modes, 
presenting many somewhat subtle traits and behaving differently from their 
counterparts in a medium of a homogeneous nature. Most existing elastic-wave-based 
NDE techniques have been well-developed for materials or structures of a single 
component (e.g., homogeneous alloys) or multiple but similar components (composite 
laminates) in a free status. When applied to objects with coupled media (such as a boat 
hull, pillar of offshore platform or petroleum pipeline (solids) submerged in seawater 
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(fluid) (Na and Kundu 2002, chen et al. 2010)), the coupling effect can prevent these 
NDE techniques from delivering precise results. To calibrate and rectify the influence of 
medium coupling on wave propagation, in particular when the coupled medium has 
very distinct properties from the one principally accommodating wave propagation (e.g., 
one being relatively ‘soft’ such as fluid or soft tissue, while the other relatively ‘hard’ 
such as alloy or cortical bone), remains relevant but challenging. 
 
     The coupling effect from fluid on elastic waves in plate/shell-like structures has been 
drawing attentions over the years (in these cases the elastic waves take the form of 
Lamb waves). Yapura and Kinra (1995) analytically studied the propagation of Lamb 
waves in a fluid-solid coupled bi-layer system, to show that the surrounding fluid could 
alter the properties of Lamb waves. This conclusion was experimentally validated by 
Moilanen et al. (2006). On the other hand, Lamb waves in thin-walled tubular structures 
were explored by Cheeke et al. (1999), to capture a decrease in the velocity when the 
tube was filled with fluid. All these studies have reaches some important conclusions 
regarding the medium coupling effect on wave propagation, whereas hitherto there is a 
lack in quantitative compensation for such a coupling effect for practical implementation 
of ultrasonic-wave-based NDE. 
 
     The above concern also exists in medical ultrasound applications. In clinical 
quantitative ultrasound (QUS), apart from the degenerative disorders of bone, the 
coupled soft tissues (skin, muscle, marrow, etc.) can also modulate ultrasound waves 
propagating in bone (Moilanen et al. 2006). This effect is often ignored in clinical 
practice, and implementation of QUS is simply based on the simplified theorem of 
elastic waves in single-medium solids in a free status, leading to less precise 
assessment without differentiating the influence of coupled soft tissues from that due to 
the degradation in bone. 
 
 
    In this study, the coupling effect arising from fluid (in engineering aspect) and soft 
tissue mimicking (in biological aspect) on ultrasonic waves were investigated and 
calibrated quantitatively, via a three-dimensional (3D) finite element (FE) analysis and a 
testing approach. Calibration results were employed to rectify traditional NDE during 
detecting corrosion in a submerged aluminum plate and QUS during predicting the 
healing progress of mimicked bone fracture. 
 
2. THEORY 
 

     In a medium comprising multi-phases (e.g., a plate submerged in liquid or a pipe 
buried in soil, the human bone covered with a layer of soft tissue), the coupling 
between two phases introduces confinements to particulate motion at the interface, and 
provides a radiation way for Lamb waves in the plate to leak into the coupled medium, 
referred to as leaky Lamb waves. Under this coupling effect, Lamb waves in a multi-
phase medium behave differently from those in a free plate, and moreover the 
influence can be distinct for different modes. In a preliminary estimate, considering a 
plate coupled with a fluid-like phase, energy associated with the fundamental 



symmetric Lamb mode ( ) is mostly retained in the plate because fluid is unable to 

sustain shear (in-plane) loads and as a result it is difficult for in-plane particulate motion 
to cross the plate-liquid interface. In contrast, in a plate coupled with a medium 
supporting both the in-plane and out-of-plane particulate motion patterns (e.g., a 
composite laminate or a plate adhered with a layer of silicon rubber), partial energy of 

 mode can leak into the coupled medium through the interface. However, in both the 

above two cases, leakage of signal energy associated with the fundamental anti-

symmetric Lamb mode ( ) is always anticipated. That is because in  mode the 

particles mostly have out-of-plane displacements and any coupled medium supports 
such a motion pattern. The above estimate will be investigated in this study. 
 
     In particular for an infinitely large fluid-solid coupled medium (fluid thickness: , half 

plate thickness: ), the characteristic equation for this two-phase medium can be 
described, if both the solid and fluid are deemed isotropic and the latter is unable to 
sustain shear loads, as (Moilanen et al. 2006) 
 

( ( )) = 0
F F L T

det G , k, a, h, , ,c , c , c ,ω ρ ρ ,              (1) 

 

where G  is the characteristic matrix, 
ω  the circular frequency, k the wavenumber, a  

and h  the thickness of the coupled fluid layer and half thickness of the solid layer, 

respectively; ρ  and 
F

ρ  the density of the solid layer and coupled fluid layers, 

respectively; F
c  the bulk wave velocity in the fluid layer; L

c  and T
c

 

 the velocity of the 

longitudinal and transverse (shear) wave modes in the plate, respectively.  
 

3. METHODOLOGY 
 
     Consider two scenarios: i) an aluminum plate (600×600×1.6 mm3) coupled with a 
layer of water with the same in-plane dimension as that of the plate but different 
thicknesses (from 0 to 10 mm with an increment of 1 mm); and ii) a soft tissue-bone 
phantom that is comprised of a bone-mimic phase (using acrylic materials) (460×240×2 
mm3) and a soft tissue-mimic phase (using artificial silicon rubber (ASR)) with variance 
in thickness (i.e., 0.8, 1.9, 3.4, 4.2, 5.1, 6.3, 7.7, 9.4 mm). Two phases have the same 
in-plane dimensions and are tied through an interface. In what follows, both the 
aluminum and acrylic are called the hard phase, while water and ASR the soft phase. 
 

     3.1. 3D FE Modelling and Simulation Technique      
     In FE modeling, the hard phase was modelled using 3D eight-node brick elements, 
while soft phase was modelled either using 3D eight-node acoustic elements (for water) 
or using 3D eight-node brick elements (for ASR). A pair of transmitter and receiver was 
placed in tandem at the interface of two phases (Fig. 1), to activate and receive 
ultrasonic waves in terms of axial transmission measurement. Note that, aimed at 
exploring the medium coupling effect on waves in bone, the transducer pair was 
positioned at the interface between two phases rather than atop the soft phase. 
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4. RESU
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Fig. 3. Group velocities of  and  in an aluminium plate coupled with water layer of 

different thicknesses 
 

      
Further, the above examination was extended to a sweep frequency range from 50 to 

350 kHz. The dispersion curves of  and  in the aluminium plate in the absence 

and presence of fluid (thickness: 5 mm) were shown in Fig. 4. Based on the above 

results, influence of the fluid coupling on the propagation of the  mode was 

quantitatively calibrated, subjected to the thickness of the fluid layer.      
 

 
 

Fig. 4. Dispersion curves of Lamb waves in an aluminium plate in the absence and 
presence of a fluid layer (4 mm in thickness) obtained via FE simulation and 

experiment 
 
 

     4.2. Coupling effect arising from soft tissue mimicking 
     The layers of ASR with different thicknesses (as mentioned in Section 3) but the 

same elastic properties ( ) were explored. Diagnostic signals, having the 

same waveform as the above case, were activated at a series of candidate frequencies 
ranging from 50 to 200 kHz, so as to ascertain the most optimal excitation frequency. 
Captured signals under excitation of 75 kHz showed the best recognisability for both 

 and , and this frequency was thereby selected as the excitation frequency of 

diagnostic signal in this parametric study. 
 

     Figure 5 shows the velocity (Fig. 5(a)) and magnitude (Fig. 5(b)) of  and  in the 

bone phantoms with soft phases of different thicknesses (0.8, 3.4, 4.2, 7.7 and 9.4 mm), 

highlighting observations that the coupled ASR layer exerts influence on both  and 

 obviously, exhibiting reductions in signal magnitudes and decreases in propagation 

velocities, for both whereas at different degrees. The most significant changes take 
place when the ASR layer is initially introduced, and decrease in signal magnitude 
continues as thickness of the ASR layer increases, but propagation velocities of both 
modes fluctuate very slightly with further increase of ASR thickness. It is different from 
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the case when a pure fluid layer serving as the soft phase (Section 4.1) in which 
prominent modulation on ultrasonic waves due to existence of coupled medium can be 

noticed for  only. To investigate the dependence of propagation velocities of two 

discussed wave modes on excitation frequency of the diagnostic signal,  and  

were activated in a sweep frequency range from 50 to 200 kHz to propagate in the 
synthesised bone phantoms. The obtained dispersion curves of two modes in the 
absence and presence of a soft phase (a layer of ASR 3.4 mm in thickness) is plotted 

in Fig. 6. Results reiterate that the coupling effect of soft phase on  and  exists 

across the whole discussed frequency range: ASR exerts strong coupling influence on 
both wave modes, exhibiting as reduced propagation velocities. 

 
(a)                                          (b) 

 
Fig. 5. (a) Group velocities and (b) magnitudes of  and  in bone phantoms (ASR 

thickness from 0.8 to 9.4 mm as mentioned before) vs. thickness of the coupled ASR 
layer (excitation frequency: 75 kHz; signal magnitude being normalised relative to the 

amplitude extremum of the signal in the absence of ASR) 
 

    
Fig. 6.Dispersion curves of  and  in bone phantoms without and with a layer of 

ASR (3.4 mm in thickness) 
     Throughout the study the most prominent modulations from a coupled soft phase on 

propagation velocities of  and take place when the soft phase is initially 

introduced, and there is no phenomenal discrepancy in such a modulation when the 
soft phase has different thickness (Figs. 3 and 5(a)). This implies that the surrounding 
soft tissues exert perceptible influence on the speed of ultrasonic Lamb waves only in a 
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of overlying soft tissues); and (b) HT-processed results of signals experimentally 
captured from intact sample (containing neither callus nor coupled overlying soft 

tissues) and mimicked fractured bone sample (with both callus and coupled overlying 
soft tissues) 

 
 
6. CONCLUSION 
 
     The effect of coupled medium (e.g., fluid or soft tissue) on Lamb wave propagation 
in engineering structures and human bones can pose great challenge on NDE and 
QUS techniques for delivering high precision evaluation. The investigation on such a 

coupling effect, conducted in this study, demonstrated that the  and  are sensitive 

to the coupling medium, manifested as reduced propagation velocity and signal 
magnitude as a result of the coupling. The alteration in the wave propagation resulted 
in impaired precision and accuracy of either NDE for corrosion in submerged structures 
or QUS for monitoring the healing progress of bone fracture. However, with 
consideration of and compensation for such a coupling effect, the precision and 
accuracy of both applications (NDE and QUS) were significantly improved, leading to 
precise prediction of the location of the corrosion and accurate determination of the 
current bone healing stage. This study recapitulates that coupling effect due to fluid/soft 
tissue on ultrasonic waves should be quantitatively taken into account when developing 
high-precision NDE and QUS techniques.  
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