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ABSTRACT 

 
     The critical-state behavior of a granular material was investigated by performing 
both drained and undrained (constant volume) triaxial simulations on isotropically-
compressed assemblies using the three-dimensional distinct element method (DEM). 
The particle size distribution used was realistic and the samples were composed of 
spherical particles. A unique critical state line (CSL) was identified which separates the 
contractive and dilative states regardless of the initial state or drainage condition. The 
CSL was curved when plotted on the e-logp’ plane (where e is void ratio and p’ is mean 
effective stress). The particle scale mechanics were explored by considering the 
distribution of normal contact forces, the coordination number (Z) and the deviatoric 
fabric. It is shown that at the particle-scale, there is a linear relationship between Z and 
logp’ at the critical state. Furthermore, a unique critical-state microstructure can be 
characterized by considering the product of the coordination number and the deviatoric 
fabric. 
 
1. INTRODUCTION 

 
The central idea of critical-state soil mechanics (CSSM) is that soils, when sheared 

to a large strain, will approach an ultimate state at which deformation continues without 
a change of either the void ratio or the stress state. This ultimate state is called the 
critical state (Roscoe et al. 1958). When the void ratio is plotted against the mean 
effective stress at the critical state, a locus of points, typically referred to as the critical 
state line (CSL), is found. The uniqueness of the CSL of sands in the e-logp’ plane has 
been shown in many laboratory tests (Been et al. 1991, Verdugo et al. 1996, Carrera et 
al. 2011). The critical state concept has been successfully applied to clayey soils, while 
some contradictory opinions still have to be reconciled regarding the critical-state 
behavior of sands. According to CSSM, the CSL is unique in the e-logp’ plane, 
regardless of the initial soil state and the stress path. However, the CSL of sands in the 
e-logp’ plane has also been found by some researchers to be dependent on the initial 

                                                 

 

 



  

soil state (Mooney et al. 1998) and the loading conditions (Finno et al. 1996). 
Laboratory data have shown that the CSL of sands in the e-logp’ plane is curved rather 
than straight (Been et al. 1991, Verdugo et al. 1996, Carrera et al. 2011), and this was 
attributed to particle breakage or asperity damage (Been et al. 1991). Furthermore, 
there is still a lack of consensus as to whether the steady state (SS) which was 
proposed based on undrained triaxial test results is identical to the critical state (CS) 
that originated from drained triaxial tests. It is interesting to note that Li and Wang 

(1998) proposed an alternative way to represent the CSL by plotting e against

α
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where α is a material parameter that has a value of about 0.6-0.8 for Toyoura sand and 
pa is atmospheric pressure (taken here to be 101.3 kPa). 

 
The distinct element method (DEM) has also been employed to study the critical-

state behavior of 2D circular systems (Zhang and Thornton 2005) and 3D spherical 
systems (Sitharam et al. 2009, Yan et al. 2011, Yimsiri et al. 2011). The critical-state 
behavior of ellipsoid assemblies has been investigated by Ng (2009). The effect of 
particle shape, e.g., angularity and roundness, on the critical-state behavior was 
studied by Maeda et al. (2009). Though most prior DEM studies have agreed that the 
critical state line is unique and is independent of the initial state, some do not agree 
with this viewpoint, e.g., Zhao and Evans (2011). A clear micro-mechanical explanation 
of the critical-state behavior has not yet been described and the aim of the current 
research is to determine whether there are certain micro-mechanical parameters that 
can reflect the macro-scale behavior at the critical state. 

 
In this study, both drained and undrained DEM simulations were carried out on 

unbreakable spherical assemblies with the grading of Toyoura sand. The uniqueness of 
the CSL in the e-logp’ plane and the origin of the curvature of the CSL in the e-logp’ 
plane are discussed. The coordination number and the anisotropy at the critical state 
are examined and the micro-mechanical evidence for the critical-state behavior is 
explored. 

 
2. NUMERICAL SIMULATIONS 

 
   The DEM simulations in this study were performed using PFC3D (Itasca 2009). The 
simplified Hertz-Mindlin contact model was used and the main input parameters are 

summarized in Table 1. The particle shear modulus (G) and Poisson’s ratio (ν) were 
taken as those of quartz (Simmons and Brace 1965). Gravity was not simulated. 
Cylindrical assemblies composed of spherical particles following the grading curve of 
Toyoura sand were created using the radius expansion method. As shown in Fig.1, the 
grading curve of Toyoura sand was approximated by 4 size intervals within which the 
particle diameters were uniformly distributed. Particles with a diameter below 0.1156 
mm were ignored because of their negligible contribution to the overall particle size 
distribution. During the radius expansion and isotropic compression stage, the 
coefficients of friction were varied to create samples with different void ratios at each 
confining pressure. This technique has been used by several researchers (Gong 2008, 



  

Barreto et al. 2009, Sitharam et al. 2009). The coefficients of friction of all samples 
were changed to 0.25 before drained or undrained tests were conducted. The position 
of the cylindrical wall was adjusted continuously to maintain a constant confining 
pressure in the drained simulation and a constant overall volume in the undrained 
simulation. The pore water was therefore not explicitly simulated, rather the pore water 
pressures in the undrained simulations were taken to be the difference between the 
initial confining pressure σc0 and current pressure σ’c acting on the cylindrical wall 
(Sitharam et al. 2009). The details of the numerical experiments are given in Table 2. 
The test identifiers used in Table 2 and in the subsequent figures are composed of 
three parts. The first part denotes the packing density as D (dense), M (medium dense) 
or L (loose); the number in the second part gives the magnitude of initial confining 
pressure in MPa and the third part shows the drainage condition. 
 

Table1 Input parameters for DEM simulations 

Particle density  2650 kg/m3  

Wall stiffness  108 N/m 

Contact model  Simplified Hertz-Mindlin  

Particle shear modulus G  29 GPa 

Particle Poisson’s ratio ν 0.12  

Coefficient of friction  0.25  

Local damping ratio  0.2  

 
Table 2 Details of the numerical experiments 

Test ID 
Initial void 

ratio e0 
Confining 

pressure σ0 (MPa)
Number of 
particles 

Test type 

D1-0.5-U 0.597 0.5 6603 Undrained 

D2-0.1-U 0.601 0.1 6995 Undrained 

M1-30-U 0.634 30 6783 Undrained 

M2-0.5-D 0.647 0.5 6783 Drained 

L-1.0-U 0.667 1.0 6783 Undrained 

 



  

 
Fig.1 Grading curve of Toyoura sand 

 
 
                                            
3. NUMERICAL RESULTS 

 
3.1 Macro-scale results 

Fig.2 illustrates the variation of deviatoric stress q with the axial strain εa in the 
undrained simulations and Fig.3 shows the corresponding evolution of pore water 
pressure u. The dense samples (D1-0.5-U and D2-0.1-U) at a low initial confining 
pressure exhibited a dilative behavior as indicated by the continuous increase in the 
deviatoric stress and generation of negative pore water pressure until the steady state 
was reached. The medium dense sample M1-30-U behaved contractively and only 
positive pore water pressure was generated throughout the entire simulation. A quasi-
steady state at which the deviatoric stress q reached a local minimum is observed in 
the loose sample at a medium confining pressure (L-1.0-U). This temporary steady 
state is followed by an increase in deviatoric stress and an associated decrease in 
positive pore water pressure. This transition point is called phase transformation point, 
marking the onset of dilation. As shearing progressed, the deviatoric stress continued 
to increase and the pore water pressure became negative before the real steady state 
is approached. The stress-strain behavior of the drained case (M2-0.5-D) is shown in 
Fig.4. The sample contracted during initial shearing (up to about 0.65% axial strain) but 
then dilated until the critical state was attained. 
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Fig.2 Evolution of deviatoric stress (undrained) 
 

 

Fig.3 Evolution of pore water pressure (undrained) 
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Fig.4 Evolution of deviatoric stress and volumetric strain (drained) 
 

  As shown in Fig.5, the stress ratio reached an identical value of 0.64 by about 28% 
axial strain regardless of the initial state and the drainage condition. The stress paths in 
the q-p’ plane are shown in Fig.6. It can be observed that all (q,p’) points at 30% axial 
strain tend to be along the same straight line  with a slope M equalling 0.638, 
corresponding to a critical state friction angle of 18° calculated from Eq. (1). 
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Fig.5 Evolution of stress ratio q/p’ 
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Fig.6 Stress path in the p’-q plane 
 

Fig.7 and Fig.8 present the critical state points on e-logp’ plane and e-(p’/pa)
α

 plane 

respectively, where α is taken here to be 0.7. The values of e, q and p’ at 30% axial 
strain are chosen to be the representative ultimate state values in each simulation. It is 
obvious that regardless of the initial state and drainage condition, a unique critical state 
line is observed on both the e-logp’ plane and the e-(p’/pa)

α

 plane. From Fig.7 it is 
interesting to see that the CSL is still curved in e-logp’ plane for these non-crushable 
particles with elastic contacts, indicating that particle breakage and asperity damage 
may not necessarily explain the curvature of the CSL on e-logp’ plane. Fig.8 shows 
clearly that only M1-30-U, which behaves contractively, has an initial state that is above 
the CSL, while all other samples have initial states that are well below the CSL.  

 
Fig.7 Critical state line on the e-logp’ plane 
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Fig.8 Critical state line on the e-(p’/pa)

α

 plane 
 
3.2 Particle-scale results 

The coordination number quantifies the average connectivity of particles and has 
been widely used to evaluate the packing density as well as the structural stability of 
samples. The conventional definition of coordination number is expressed by Eq.(2). 

2 C
Z

N

⋅

=                                                          (2) 

In this equation, Z is the coordination number, while C and N are the numbers of 
contacts and particles respectively. The evolution of coordination number Z is 
presented in Fig.9. The coordination number in the drained case (M2-0.5-D) tends to 
reach a constant value at a small strain. For the undrained cases (D1-0.5-U and D2-
0.1-U), the coordination number increases when the samples begin to dilate and a 
constant value is attained at large strain levels. However, for the sample without dilation 
(M1-30-U), the coordination number also reaches a constant value at a very early stage.  
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Fig.9 Evolution of coordination number 

 
  The coordination number reflects only the contact intensity and gives no information 
on the contact force magnitude. Several researchers have used probability density 
functions (PDFs) to study the distribution of contact force magnitudes (Radjai et al. 
1996, Antony 2000). The probability density functions of normalized contact normal 
forces after isotropic compression and at 30% axial strain are shown in Fig.10 (a) and 
(b) separately. It is worth noting that although the PDF at the initial state depends on 
both the packing density and stress state, an almost identical PDF is observed at the 
large strain level despite tiny differences in the distribution of contact forces that are 
smaller than the average (f<1). As shown in Fig.11, a linear relationship between the 
mean effective stress and the average contact normal force can be observed. Hence, it 
may be concluded that the configuration of normal contact force at the critical state is 
unique irrespective of the initial state and drainage condition. 
 

(a) (b) 
Fig.10 Probability density function of normal contact force 
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Fig.11 Relationship between the average normal contact force and the mean effective 

stress 
   
  Satake (1982) suggested that the structural anisotropy of a granular assembly 
composed of disc or sphere particles could be described by the second-order fabric 
tensor given by Eq.(3). 
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The deviatoric fabric Φd which is the difference between the maximum eigenvalue Φ1 
and minimum eigenvalue Φ3 of the fabric tensor has been widely used to quantify the 
structural anisotropy of granular assemblies (Thornton 2000, O’Sullivan et al. 2008). 
The evolution of deviatoric fabric is illustrated in Fig.12. Prior studies have related the 
evolution of deviatoric fabric and deviatoric stress (Thornton 2000) or the deviator fabric 
and the principal stress ratio (Maeda 2009, Ng 2009). In the current study comparing 
Fig.12 with Fig.2 and Fig.4, it is clear that the deviatoric fabric evolves following the 
same trend of deviatoric stress in the drained case (M2-0.5-D) as well as in the 
contractive undrained case (M1-30-U). However the evolution of deviatoric fabric in the 
undrained tests (D1-0.5-U, D2-0.1-U and L-1.0-U) where dilation occurs does not 
coincide with the evolution of deviatoric stress (Fig.2). Furthermore a unique deviatoric 
fabric is not observed at large strain levels.  
 
An alternative way to quantify the contact anisotropy is to use the product of 
coordination number and deviatoric fabric (Maeda 2009, Barreto and O’Sullivan 2012):  
a parameter termed the deviatoric fabric intensity (Maeda 2009). The physical meaning 
of this parameter is straightforward as the deviatoric fabric reflects the average 
anisotropy per contact while the coordination number shows the average connectivity 
per particle; thus, their product quantifies the contact anisotropy per particle. Fig.13 
shows that although the evolution of deviatoric fabric intensity depends on the initial 
state and drainage condition, an almost identical value of 0.37 is observed at the large 
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strain levels. This may indicate a real critical state structure. Moreover, it is also 
interesting to see that the trajectories of the deviatoric fabric intensity are similar to the 
stress ratio q/p’ against axial strain curves (Fig.5). 

 
Fig.12 Evolution of deviatoric fabric 

 
Fig.13 Evolution of deviatoric fabric intensity 

 
   As there exists a macro-scale CSL in the e-logp’ plane, it is natural to anticipate a 
micro-scale CSL in the Z-logp’ plane because the coordination number reflects the 
packing density and is thereby related to the void ratio. The CSL in the Z-logp’ plane is 
found to be a straight line as shown in Fig.14, which is in agreement with previous 
research work (Maeda 2009). It is difficult to anticipate a CSL in the Φd-logp’ plane as 
no direct relationship has been found between the deviatoric fabric and the macro 
parameters. However, since the deviatoric fabric intensity approaches a unique value at 
the critical state, a relationship can be derived (Eq.4) between the deviatoric fabric and 
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mean effective stress p’ by considering the linear relationship between Z and logp’ at 
the critical state: 

log '
cri

a

b p c
φ =

⋅ +

                                                         (4) 

a represents the deviatoric fabric intensity, while b and c are the curve fitting 
parameters of the CSL in the Z-logp’ plane. The curve predicted by Eq.(4) and the 
deviatoric fabric obtained in the numerical simulations are plotted together in Fig.15. 
The predicted curve seems to represent the numerical results quite well. 
 

 
Fig.14 Critical state line in Z-logp’ plane 

 

 
Fig.15 Critical state line in Φd-logp’ plane 
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CONCLUSIONS 

 

This paper has explored the critical state line using DEM simulation results for both 
drained and undrained triaxial tests. Both macro- and particle-scale behaviors at the 
critical state have been investigated. The main conclusions can be summarized as 
follows: 
 

(a) The CSL is unique irrespective of the initial state and drainage conditions; 
 

(b) The curved CSL in e-logp’ plane is not necessarily due to the change of shearing 
mechanism resulting from particle breakage or asperity damage as hypothesized by 
Been et al. (1991); 
 

(c) The unique critical state is characterized by both a unique critical-state 
microstructure quantified by the deviatoric fabric intensity (the product of the 
coordination number Z and the deviatoric fabric Φd) and a unique configuration of 
contact normal force represented by the probability density function of contact normal 
forces. The difference in the stress magnitude at the critical state may be attributed to 
the difference in magnitude of the contact forces at the critical state; 
 

(d) The CSL in the Z-logp’ plane can be well represented by a straight line. Based on 
this, an expression for the CSL in the Φd-logp’ plane was derived by considering the 
unique value of the deviatoric fabric intensity at the critical state. 

 
The conclusions presented here are based on a limited data set and so should be 

considered as preliminary findings. Additional simulations are required to further 
develop these ideas. 
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