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ABSTRACT 

 
     The systems of coupled partial differential equations (PDE) are usually solved 

numerically, following a monolithic or decoupled solution algorithm. Despite the 

capability of the monolithic schemes in resulting unconditionally stable numerical 

solutions, these solvers are very case-specific and only semi-optimal. This has 

motivated the development of various decoupled solution strategies. However, 

decoupling of the problem can cause conditional stability of the solution and therefore, 

must be accompanied by an exhaustive stability analysis. 

     Here, we endeavour to propose a feasible receipt for the stability analysis of 

staggered and partitioned solution strategies applied to coupled, multi-field problems. 

The procedure is used to obtain the stability conditions of decoupled solution schemes 

applied to the problems of thermoelastodyanmics as well as fluid-porous media 

interaction. 

 
1. INTRODUCTION 

 

                                                 

1) Post Graduate Student 
2) Senior Lecturer (Privatdozent) 
3) Professor 



  

     Dynamic interaction among distinct heterogeneous components yields a coupled 

phenomenon. This interaction can occur throughout the volume, as in thermo-

mechanical coupling (REF) and solid-pore fluid interaction (REF), or on a surface 

interface, as in fluid-structure interaction (REF). Therefore, the coupled problems can 

be divided into volume- and surface-coupled problems (Markert2010). The 

mathematical modelling of these problems often results in systems of coupled partial 

differential equations (PDE) in space and time the solution of which reveals the 

response to excitations or changes in the external conditions. This is usually done 

numerically and following a monolithic or a decoupled solution scheme 

\cite{H.1995,Bathe1995, Piperno1995, degroote2008}, \cite{ Armero1992,Argyris1982} 

\cite{Zien1988, Maea2009}. 

     The monolithic solvers are based on a holistic solution of the system and employing 

an implicit time integration, they result in unconditionally stable numerical solutions 

\cite{Armero1992}. However, these schemes are very case-specific and often only 

semi-optimal. Moreover, they usually yield large equation systems. On the contrary, in 

the partitioned approaches, the physically or computationally heterogeneous system 

components are treated as isolated entities that are independently advanced in time, 

possibly by different integrators. This can be done, e.g., by accomplishing the time 

integration and data transfer in the sense of the block-Gauss-Seidel strategy [17, 41] or 

the Conventional Serial Staggered (CSS) procedure [1, 15], or using localised 

Lagrange multiplier method (REF). Using a decoupled solve facilitates the possibility of 

exploiting tailored discretisation and solution algorithms for individual subsystems and 

of using non-matching models for the interacting fields as well as software re-usability 



  

and the capability of taking advantage of specialised codes 

\cite{Feea2001,Farhat2000}. Nevertheless, selection of the way of partitioning and the 

sequence of time integration of the subsystems can be detrimental to the stability of the 

scheme and can lead to conditional stability \cite{Matthies2006, Joosten2009}. 

Consequently, stability analysis and establishing the stability condition become 

pertinent steps in proposing new decoupled solution strategies. It has been the 

motivation for many case-specific applications, for example in \cite {Zien1988} and 

\cite{Park1983}, the stability of staggered solution algorithms applied to pore fluid-soil 

interaction problems is investigated. Moreover, in \cite{Armero1992}, the von Neumann 

stability analysis method is employed to provide the necessary stability condition for an 

isothermal operator-splitting scheme that has been proposed for the decoupled solution 

of a thermomechanical problem. In \cite{degroote2008}, the Fourier error analysis is 

used to achieve the stability condition of a partitioned solution scheme applied to the 

coupled problem of an unsteady flow in a tube, while in \cite{Joosten2009}, the block 

Gauss-Seidel method is employed to solve FSI in a staggered fashion and to 

investigate the influence of different time integrators on the convergence. 

     However, despite the vast number of stability-analysis-related publications, usually 

either a proper explanation of the procedure is missing or authors interpret the method 

in a rather mathematical way that makes it puzzling for researchers from more 

application-oriented disciplines. To this end, the present study endeavours to overcome 

these deficiencies and proposes a stability analysis algorithm that incorporates the 

salient features of the previous works. The focus is on providing a procedure that can 

be employed to find the critical grid sizes in different scenarios with minimum difficulty 



  

and without any need to solve the problem. To illustrate its capabilities, the algorithm is 

then utilised for the stability analysis of solution schemes applied to surface- and 

volume-coupled multi-field problems. 

     The paper is organised as follows. In Section (2), the stability analysis algorithm is 

presented. In Section (3), the method is employed to investigate the stability conditions 

of decoupled solution schemes used to solve the coupled problems of 1-d and 2-d 

thermoelastodynamics as well as fluid-porous media interaction. Finally, the conclusion 

and discussion are presented in Section~\ref{sec:Concl}. 

2. STABILITY ANALYSIS ALGORITHM 

     Assume that the mathematical modelling of a transient physical phenomenon 

happening on some specific d-dimensional spatial domain d
R⊂Ω and time interval 

[ ]Tt ,
0

yields a hyperbolic or parabolic PDE system in space and time, which in abstract 

form reads 
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     Therein, L represents some differential operator of space and time and P
RU ∈ is the 

unknown state vector, containing p  primary variables for which (1) has to be solved. 

Considering the standard 3-dimensional physical space and replacing all the 

derivatives by differential quotients changes (1) to a system of coupled algebraic finite-

difference equations (FDE) that, assuming a constant and uniform grid in space and 

time, for each grid point at time tnt
n

∆= and position [ ]
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where D represents some finite-difference operator approximating L , ( ) ( )
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= .:. and 
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jklΧ is an approximation of
n

jklU that has to be calculated via numerical computation. 

Moreover, from the inverse Fourier transform, we have 
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with 1: −=i , [ ]ππϑ ,−∈  and
a

a
x∆

= ϑξ : for }3,2,1{=a . Then, following the method 

proposed in (REF) one obtains 
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where
t

Tn
∆

≤≤0  and G is called the amplification matrix. Consequently, the necessary 

and sufficient stability condition for the numerical scheme reads (REF) 
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is defined as the biggest eigenvalue 

of the amplification matrix in the absolute form. Then, it can be shown that (REF) 
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Hence, a necessary stability condition for the numerical solution scheme reads 

 
.

22
CRC

n

≤Ρ∈∃  (7)  

Assuming 1
2
≥C , one concludes 
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which is known as the von Neumann stability criterion (REF). Accordingly, 1<Ρ
 
is a 

sufficient condition to satisfy (8) and to guarantee the boundness of the spectral radius. 

Hence, the conditions under which all roots of the characteristic equation, associated 



  

with the amplification matrix, lie on the unit circle on the complex plane, is known as the 

necessary stability condition for the solution scheme (REF). This condition may directly 

be checked by assembling the characteristic equation, known as the amplification 

polynomial, and computing its roots. However, it is mostly desired to determine the 

necessary stability condition solely based on the coefficients of the amplification 

polynomial, thus, avoiding the explicit computation of the roots. The Schur-Cohn 

stability criterion is a plausible way to directly compute this condition. Having the 

amplification polynomial as an algebraic polynomial of order 1≥n , the Schur-Cohn 

matrix D  reads 
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where 
i

α
 
represents the coefficients of the amplification polynomial 
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and iα  is the complex conjugate of
i

α .Following that, the Schur-Cohn criterion (SCC) 

reads: “all the roots of the amplification polynomial lie on or inside the unit circle on the 

complex plane if and only if the Schur-Cohn matrix is positive innerwise.” (REF33,34). 



  

However, to directly check the SCC can be computationally very expensive (REF 

Felippa and Park). Instead, one transforms the amplification polynomial to a Hurwitz 

polynomial to alleviate this problem (REF16). This is done by changing the variable 

from γ  to s  using the following map: 
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     Doing so and suppressing all common factors, satisfaction of the von Neumann 

stability criterion becomes equivalent to having negative real parts for all the roots of 

the Hurwitz polynomial )(sG
H

. This condition can be checked via the Routh-Hurwitz 

criterion (RHC) (REF 35, 36), which reads: “All the roots of the Hurwitz polynomial lie 

on the left half-plane if and only if all of the Hurwitz determinants corresponding to 

)(sG
H

 are positive”.  

     It should be noted that for i

i

n
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0
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∑=  the Hurwitz determinant is defined as 
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     Although the RHC is easier to handle than the SCC, the evaluation of all Hurwitz 

determinants still proves difficult. A more practical criterion that essentially yields the 

same result (REF38) is the one proposed by Liénard and Chipart in 1914 (REF38). The 

so-called Liénard-Chipart criterion (LCC) assures that the necessary stability condition 



  

is satisfied if and only if the corresponding expressions represented in Table (REF) are 

all positive.  

 

 

Table 1: Expressions for the Liénard-Chipart stability criterion. 
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     In conclusion, the flowchart provided in Figure 1 can be used to obtain the 

necessary stability condition for general numerical solution schemes applied to coupled 

PDE systems. 

 

 



  

 

 

Figure 1: Stability analysis flowchart. 

 

 

3. Applications 

     In this section, the stability analysis algorithm introduced before is used to 

investigate the stability condition of decoupled solution schemes applied on coupled 

problem of Thermoelastodynamics and fluid-porous media interaction. 

 
     3.1. Linear Thermoelastodynamics 

     In this section, the volume-coupled problem of thermoelastodynamicsis is studied. 

The proposed decoupled solution scheme is based on the block Gauss-Seidel strategy 

for data transfer between subsystems (Armero). The necessary stability conditions for 



  

1- and 2-d problems are established.  

     3.1.1 System of governing equations   The linear momentum balance, together with 

the energy balance compose the governing equation system for the problem of 

thermoelastodynamics. For the geometrically linear regime and neglecting body forces 

and radiation terms it reads (REF7) 
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(13)  

 

where the first equation is just added to obtain a 1st-order equation system in time. This 

facilitates the application of established numerical integration schemes out of the class 

of Runge-Kutta methods. Furthermore, a superposed dot represents the total derivative 

w.r.t. time, ρ  is the mass density, 
v

C  is the specific heat at constant volume, m  is the 

stress-temperature modulus and 
0

θ  is the reference temperature. The constitutive 

relations for the stress tensor and heat transfer vector read 
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where µ  and λ  are the Lamé constants and k  the thermal conductivity. Furthermore, 

ε  represents the strain tensor in the linear regime  
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     3.1.2 Decoupled solution scheme   Equation (13) represents a coupled PDE system, 

where the strength of coupling between the mechanical unknowns, i.e., displacement 

and velocity, and the thermal variable, i.e., temperature, is governed by the stress-

temperature modulus. This equation system can easily be solved in a decoupled 

fashion. Here we focus on the isothermal operator-splitting method (REF 7) and employ 

our stability analysis algorithm to scrutinise the stability condition of this solution 

scheme.  

     The isothermal operator-splitting method is based on the block-Gauss-Seidel 

strategy (REF 17) and results in breaking down the problem into a mechanical 

subproblem, composed of Eq. (13)
1
 and (13)

2
, and a thermal subproblem, i.e., Eq. 

(13)
3
. Then the solution is computed following a sequential procedure: 

1. Insert the old value of temperature at time n

tt =  into the mechanical subproblem 

2. Advance the mechanical subproblem and update deformation and velocity 

3. Insert the newly found mechanical quantities into the thermal subproblem  

4. Advance the thermal subsystem and update the temperature 

     Following this procedure and employing the above-described stability analysis 

algorithm, it can be seen that for a d-dimensional problem, the LCC is satisfied if 
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and hence, this is the necessary stability condition for the isothermal splitting scheme.  

 

 

 

Figure 2: Geometry and boundary conditions for thermoelastic vibration (REF 7). 

 

     3.1.3 Numerical Example   A thermoelastic vibration problem adopted from (REF 7) 

is selected to verify the results of the stability analysis. Consider a homogeneous bar 

with geometry and material parameters as presented in Fig. (2) and Table (2), where 

both ends of the bar are thermally and mechanically fixed. A perturbation in form of a 

sinusoidal initial velocity along the length moves the system away from its stable 

equilibrium state and causes a horizontal vibration, i.e.,  
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     Consequently, using the material parameters as shown in Table (2) and from Eq. 

(16), the, critical time-step size, i.e., the biggest t∆ , which satisfies the necessary 



  

stability condition for the isothermal operator-splitting scheme reads 

 

Table 2: Material parameters for the thermoelastic vibration problem. 

 

Parameter Symbol Value SI unit  

Mass Density ρ 1 3/mkg  

1st Lamé constant µ 3/8 2
/mN  

2nd Lamé constant λ  6/8 2
/mN  

Stress-temperature modulus m  -1 )/( 2
KmN  

Specific heat at constant volume 
v

C  1 )/( 3KmJ  
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In the other words, the stability analysis predicts that all roots of the amplification 

polynomial lie inside the unit circle on the complex plane, and the absolute value of the 

roots and, consequently, the spectral radius associated with the amplification matrix are 

less than unity as long as time-step size is smaller than the critical values in Eq. (18). It 

should be noted that this result has been obtained without any need to solve the 

problem itself. Assembling the amplification polynomial and calculating its roots verifies 

the correctness of this founding, see Fig. (3).  

 
     3.2. Fluid-porous media interaction 

     In this section, the surface-coupled problem of Fluid-Porous Media Interaction 



  

(FPMI) is studied, see Fig. (4). The proposed decoupled solution scheme is based on 

the method of localised Lagrange multipliers (LLM) method, which is extensively 

explained and  

 

 

Figure 3: Roots of the amplification polynomial for 1-d (left) and 2-d (right)  

thermoelastic vibration problem. 

 

 

implemented in (REF Park1998) and (REF Park1998b, Park2001, Park2008), to name 

but a few. In short, LLM method is based on breaking down the system into three  

 

 

Figure 4: Schematic for the Fluid-Porous Media Interaction (FPMI) 



  

 

 

communicating subsystems, namely, the fluid subsystem
L

Χ , the porous media 

subsystem 
P

Χ  and the interface. It offers a modular treatment that makes LLM method 

a superior candidate compared to the classical Lagrange multiplier method (REF 

Markert, Habil, 96, 99,100).  

     3.2.1 System of governing equations   Here, we proceed from the interaction 

between an incompressible fluid with a saturated porous media, composed of 

intrinsically incompressible constituents. Furthermore, we assume that the membrane 

between the subsystems is impermeable and hence, no mass-exchange happens. 

Consequently, and neglecting the thermal effects and body forces, the governing 

equation systems for the interacting subsystems in the 1-d space and for geometrically 

linear regime read 
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with  
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and where .const
L
=ρ  is the density of the fluid, L

u  represents the displacement of the 



  

fluid and 
L

p  is the hydraulic pressure inside the fluid subsystem. Moreover, aRaa
n ρρ =  

is the partial density of the constituent a

ϕ  ( :Sa = solid skeleton; :Fa = pore fluid) 

where dvdvn
aa

/:=  is the volume fraction and .const
aR

=ρ is the effective or intrinsic 

density of a

ϕ . Furthermore, S
E  is the Young’s modulus of the porous solid matrix, FR

γ  

is the effective fluid weight and F
k represents the Darcy permeability. Moreover, 
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     3.2.2 Perturbed Lagrange multiplier formulation   Both Eq. (19) and (20) are of type 

of Algebraic-Differential Equation (ADE) systems. Utilising perturbed Lagrange 

multiplier formulation (also known as the penalty function formulation) is a plausible 

way to eliminate the algebraic constraints and reduce the total number of equations 

(REF Heinrich 1995 and Park1984). To this end, one assumes that the corresponding 

mass balances are only weakly satisfied. Consequently the modified mass balance for 

L
Χ  reads 
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where 
L

Γ  is called the penalty parameter and is a very large number (REF 

Heinrich1995). This yields a pseudo-constitutive relation for the hydraulic pressure 
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Replacing this result in the momentum balance of 
L

Χ  yields 
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which in the abstract form reads 
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In a similar fashion, one assumes that the representative of the mass balance for 
P

Χ , 

i.e., the mixture volume balance is also only weakly satisfied 
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Consequently 
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Inserting this relation in the momentum balances of pore fluid and solid skeleton yields 
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that can be written in the following abstract form 
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with [ ]TFSp uuu ,:= . 



  

     3.2.3 Constraints on the interface   Apart from the governing equations, one also 

has to make sure that additional algebraic compatibility conditions, known as the 

interface kinematic constraints are also satisfied. Considering Fig. (5), these 

compatibility conditions read 
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(30)

 

Therein, u  is a vector including all displacements, 
g

u  is the global frame displacement 

vector, 
T

B is a Boolean matrix that extracts the boundary values of the displacement 

and L  is the finite element assembly operator.  

 

 

 

 

Figure 5: LLM method to decouple FPMI problem. 

     3.2.3 The energy functional and coupled equation system   Assembling the energy 

functional is a key step in using the LLM method. For our problem, the energy 



  

functional augmented with the boundary constraint condition reads 

 

 
( )∫∫∫ −⋅+⋅+=Π

S

g

TT

V

T

PPP

V

LLL dAuLuBdVuuFdVuuF

PL

λ)()(:  
(31)  
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(32)  

It represents the decoupled equation system in the strong form. However, employing 

the FEM for spatial discretisation is a common practice to achieve a semi-discretised 

version of this equation system. 

      3.2.4 Governing weak formulation   Following the idea of the FEM, Eq. (32) is 

transferred to weak formulation. To this end, the balance relations i.e., Eq. (32)
3
 and 

(32)
4
 are weighted by independent test functions and integrated over the 

corresponding spatial domains 
L

V  and 
P

V . Moreover, the surfaces 
L

S  and 
P

S  are split 

into Dirichlet and Nuemann boundaries. Furthermore, each spatial domain is 

subdivided into finite number of elements yielding an approximation of the continuous 

domains 
L

V  and
P

V  by the discrete domains h

L
V  and h

P
V . This spatial discretisation 



  

yields a finite element mesh on which the following trial functions are defined 
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where 
L

U , 
S

U  and 
F

U  represent the interpolation functions corresponding to the nodal 

unknowns of the FE mesh 
L

u , 
S

u  and 
F

u . Then, multiplying each balance relation by 

the corresponding test function and applying the product rule and the Gaussian integral 

theorem, one obtains the weak forms as 
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with [ ]TBBB
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:= . Moreover, introducing b)(•  to be the approximated (known) 

Dirichlet boundary conditions of )(• , the mass, damping and stiffness matrices and 

force vectors read 
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and  
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In the matrix form, Eq. (34) reads 
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      3.2.5 Time discretisation   Implicit time integration by the mid-point rule is an 

appropriate strategy for the temporal discretisation of Eq. (39). Proceeding from a time 



  

step t∆  this method reads 
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Then, the time discretisation of Eq. (39) leads to the following matrix discrete equation 
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where [ ]Tfff
21

:=  and 
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Moreover, 
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      3.2.5 An unconditionally-stable decoupled solution scheme   Solving for 

subsystems displacements and substituting them into the interface compatibility 

condition one obtains  
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with  
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     Apparently, solution of Eq.(44) reveals the new values for the interface forces and 

also the frame displacement. Having the updated interface forces, one can substitute 

them in the 1st row of Eq.(41) and consequently update the displacements of the 

interacting subsystems. 

     Employing the stability analysis algorithm discussed before, it can be shown that the 

LLC is always satisfied. This shows the unconditional stability of the proposed 

decoupled solution scheme. 

      3.2.6 Numerical example   To set up an example, the numerical values as 

presented in Table (3) are chosen. It is worth mentioning that in the geometrically linear 

regime .

0
constnn

a

S

a
=≈ Using these material parameters one obtains that in spite of 

considering different time-step sizes, the spectral radii remains always smaller than one, 

see Fig. (4). It approves the unconditional stability of the solution scheme, which has 

previously been predicted by the stability analysis. 

 

 

Table 3: Material parameters for the FPMI problem. 



  

 

Parameter Symbol Value SI unit 

Young’s modulus of the solid skeleton S
E  6

1020 ⋅  2
/mN

Volume fraction of solid S

S
n
0
 67.0  -

Volume fraction of pore fluid F

S
n
0
 33.0  -

Partial density of dense solid SR
ρ  2000  3

/mkg

Partial density of pore fluid LFR
ρρ ,

1000  3
/mkg

Effective fluid weight FR
γ  9800  )/( 22mskg

Darcy permeability F
k  2

10
−  sm /

 

CONCLUSION 

 

Enhanced and efficient 3-dimensional finite elements for the structural analysis of 
cable-stayed bridges … 

 
REFERENCES 

 

Cadappa, D.C., Sanjayan, J.G. and Setunge, S. (2001), “Complete triaxial stress-strain 
curves of high-strength concrete,” J. Mat. Civil Eng., ASCE, 13(3), 209-215. 
Chern, J.C., Yang, H.J. and Chen, H.W. (1992), “Behavior of steel fiber reinforced 
concrete in multi axial loading”, ACI Mat. J., 89(1), 32-40. 
 

 

 

Figure 4: Spectral radii for the decoupled solution scheme proposed for FPMI problem 

thermoelastic vibration problem. 
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