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ABSTRACT 

 
Foundations of offshore structures have been actively studied to provide design 

guides for oil platforms in the past. Presently, this asset from oil industry now finds its 
application in the design of the foundations for offshore wind turbines. The analytical 
solutions for the holding capacity of suction anchors have been developed based on 
limit equilibrium and limit analysis theorems and often compared to the results of novel 
approaches such as finite element (FE) analysis. However, some solutions show 
discrepancy with the FE analysis results under specific conditions, say under certain 
value of the ratio of length to diameter. The main scope of this paper is to analyze the 
hold capacity of suction caisson anchors, especially with slenderness ratio based on FE 
analysis. The results will provide a basis to enhance the existing plasticity solutions for 
anchor holding capacity. 
 
 
1. INTRODUCTION 

 
Foundations and anchors for offshore structures have actively been studied by oil 

industries, and under new demands for offshore wind energy the knowledge in offshore 
oil platforms finds its way in the development of foundations for offshore wind turbines. 
The vast majority of current foundations for offshore wind turbines are monopile fixed at 
the sea bed in shallow water, up to ~30 m. In deeper water, i.e. deeper than ~80 m, the 
floating wind turbines are thought to be most cost-effective. There recently were, 
therefore, researches initiated and conducted for this type of wind turbines including 
analytical works, model tests, and implementation of prototypes (Goupee et al., 2012; 
Cermelli et al., 2012). 
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