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Abstract 
 

     A huge water surface displacement can be generated by soil/structure failure in 
reservoir, snow avalanches into lakes, lavas or rock falls into the oceans or bays. A 
mesh-free particle method for such a multiphase soild-water system is developed. 
The model of this study is based on the Moving Particle Semi-Implicit (MPS) 
method (Koshiazuka and Oka, 1996). Sliding sand into water forms a two-phase 
system where the sand phase is treated as a non-Newtonian fluid. To validate the 
MPS multiphase model, the model was applied to the rigid box sliding down into 
the water first. The fluid motion of the numerical results is reasonably simulated 
when compare to the experimental results. The results show that the rheological 
effects on the water surface displacement have also been modeled well. 
 
 

1. Introduction 

     A huge water surface displacement (tsunami) can be generated by 
soil/structure falls into reservoirs, lakes, ocean or bays. Tsunamis can be also 
generated by earthquakes, volcanic eruptions, or any under water mass 
movements.  Massive waves generated by landslides in 1998 Papa New Guinea 
took approximately 2000 life (Bradet et al. 2003; Lynett et al. 2003). Waves 
generated by water volume displacement have potential to cause environmental 
disasters because of the massive possible run-up. As an example, a subarial 
rockslide was created by an Mw 8.3 earthquake in Lituy Bay, Alaska, which 
produced a maximum run-up of 524 m (Fritz et al. 2001). The modeling of any 
slide motion into the water and the generated wave can provide vital information 
for appropriate structural design of buildings, bridges, railways, roads, and any 
other infrastructure in coastal regions. 
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     Some experiments have been conducted on subarial or submerged landslide 
interactions with water and the associated wave propagation (Fritz 2002; Grilli 
and Watts 2005; Enet and Grilli 2007; Heller 2010). A number of Eulerian mesh-
based numerical methods were developed to simulate the free surface problems 
including finite element method (Zhu and Randolph 2010), finite volume method 
(Serrano-Pachecod et al. 2009), Volume of Fluid method (Heinrich 1992), and 
Marker and Cell (Harlow 1964) method. However, special treatment is required to 
equations in numerical methods when free surface is encountered (Liu et al., 
2005). As a result, a mesh free numerical model is more appropriated to free 
surface or interfacial problems such as waves generated by landslides in water. 
     The Moving Particle Semi-Implicit (MPS) method introduced by Koshiazuki 
and Oka (1996) is a weight averaging based mesh free particle method. Several 
free surface problems, such as braking waves (Koshizuka et al. 1998), flow over 
spillways (Shakibaeinia and Jin 2009), and hydraulic jump formation 
(Shakibaeinia and Jin 2010) were successfully simulated using the MPS method. 
    The present study aims to develop a mesh-free Lagrangian MPS model to 
reproduce the behaviour of a subarial landslide tsunami wave. The developed 
model is validated and evaluated using experimental measurements (Heller 2007) 
on a 2-D landslide problem. The numerical method of this study is presented first. 
The numerical model will be used and compared with experimental data. 
 

2. The Model Methodology 

Fluid flow governed by a continuity and momentum equation is based on a 
Lagrangian method can be expressed as: 

( ) 0=⋅∇+ uρρ
Dt
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where ρ, u, p, µ and F represent density, flow velocity, pressure, dynamic 
viscosity, and body forces, respectively. In the MPS method (Kashizuka and Oka 
1996), position, velocity, and pressure are calculated for each particle in a mesh-
free frame.  There is no convection term in the momentum equation, and the 
movement of particles is simply calculated by Dr/Dt=u, with r being the position 
vector. The time integration is based on a fractional step method (Shakibaeinia 
and Jin 2010) where velocity for the target particle, i, is given as: 
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in which, uk+1
i is velocity at the new time step, (k+1); u’i is the velocity correction 

term; and u*i is the velocity at the prediction step. The velocity prediction is given 
by: 
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