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ABSTRACT 
 
     A finite element couple model to obtain the free surface in unconfined seepage 
problems is presented. It is a two-dimensional, finite element numerical model 
formulated in displacements, which allows us to calculate the position of the free 
surface in steady flow conditions, by changing the impermeability boundary conditions 
in an iterative manner, keeping constant the domain and the FE mesh. The accuracy in 
the computation of the free surface position into an earthfill dam, is of paramount 
importance in its design stage as well as to ensure its safety. Aiming to corroborate the 
suitability of this new methodology, a study of the Gasset Dam (Ciudad Real, Spain) 
has been made with success, obtaining the free surface position and the total 
discharge through the dam.  
 
 
1. INTRODUCTION 
 
    The problem of calculating free surfaces in unconfined seepage media has been 
dealt with by many geotechnical researchers during the last forty years. It is possible to 
find in the literature several analytical solutions for particular problems, but they usually 
involve extremely restrictive assumptions which make these procedures not very useful 
in real field cases (Harr, 1962). This circumstance makes the numerical procedures 
almost the only possibility for obtaining feasible solutions when heterogeneous and 
geometrically complicated porous media are analysed. Hence, finite element based 
approaches are of general use. The first developed methods of this type consisted of 
obtaining the free surface in an iterative way, assuming its location, generating a mesh 
inside the flow domain, obtaining the flow network inside this domain, checking the 
consistency of the free surface conditions, and thus, locating another boundary. This 
procedure usually involves a high number of iterations and numerical effort, due to the 
necessity of remeshing (Taylor and Brown, 1967; Finn, 1967; Neuman and 
Witherspoon, 1970). Several more advanced methodologies were based on adaptative 
meshing, in which the free surface is also obtained after an iterative procedure, but 
moving the nodes located at the free surface, meaning that it is not necessary to create 
the mesh in each iteration. The main countermeasure in this case is the possibility of 
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having highly distorted elements at the end of the computation, producing high 
numerical errors to appear (Oden and Kikuchi, 1980). More efficient models are those 
in which the flow domain is constant, but the soil properties (mainly, the permeability) 
are variable depending on the location of the free surface (Desai, 1976; Bathe and 
Khoshgoftaar, 1979; Lacy and Prevost, 1987; Borja and Kishnani, 1991). Another 
possibility consists of keeping constant both flow domain and soil properties, and 
making the impermeability boundary conditions variable in the requited iterations, to 
avoid the entrance of fluid to the porous medium through those borders where this 
circumstance is physically not possible (López-Querol et al, 2011). This methodology 
has been successfully tested with theoretical examples under steady conditions, but not 
using real field cases so far, for which data are usually scarce and difficult to find. 
The present research shows the application of this new methodology to a real field 
case: the Gasset dam in Ciudad Real (Spain). This infrastructure is of paramount 
importance for water supplying the population in a wide zone, as well as for irrigation 
purposes. This dam was built about a century ago, and it has suffered several renewing 
works, amongst other reasons, aiming to increase the maximum volume of the 
reservoir, and to solve several filtrations and leaking problems. Thus, it is a very non 
homogeneous porous media, with a non easy geometry (Peco and López-Querol, 
2012). 
The paper begins explaining the mathematical and numerical models, as wells as some 
details on the code developed ad hoc for analysing this earth dam. After that, the 
Gasset dam, with all its features, is presented, and the geotechnical parameters as well 
as the available data are described. After showing the comparison of the numerical 
model results and field measures under steady flow conditions, a new analysis of the 
dam before being repaired is also attached, introducing an interpretation of the 
pathology producing some leaking to appear some decades ago. All these results show 
the feasibility of this methodology for analysing real field cases.  
 
 
2. DESCRIPTION OF THE MODEL AND ITERATIVE PROCEDURE 
 
2.1 Mathematical model 
     The employed mathematical formulation follows the Biot’s equations, which govern 
the transmission of stress waves though saturated porous media (Biot, 1959). The 
model is formulated according to Zienkiewicz et al. (2000). In a differential, saturated 
element of soil, consisting of a part or solid phase and water saturating the voids, the 
equilibrium equation is given by Eq. (1): 
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The equilibrium of the fluid phase is governed by Eq. (2): 
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Eq. (3) represents the continuity of flow through the saturated porous medium: 
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 (3) 
 

In the above equations, {.} means vectors, u represents the solid phase displacement, 
w is the liquid phase displacement relative to the solid phase, ρ y ρw denote the soil 
and water densities respectively, b is the vector of external forces (gravity forces), n is 
the porosity of the solid skeleton, K denotes the matrix of physic permeability whose 
components are expressed in m3·sec/kg units, pw is the pore pressure, Q represents 
the volumetric compressibility of the mixture solid-liquid which is expressed as: 
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where Kw and KS are, respectively, compressibilities of the liquid and solid phases. 
In a two dimensional, plane strain approach, the matrix operator, S, follows the next 
expression: 
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(5) 
 

and the vector m, is defined as: 
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The constitutive law of the soil establishes the stress-strain relationship, and can be 
written by: 
 �%� � &����� � &�� � � � ��� 
 (7) 
 

where σ denotes the stress, and ε is the strain. The matrix Dep contains the constitutive 
behaviour of the soil. 
Since, in the present study, it is expected that the fluid displacements are much higher 
than the solid phase movements, the solid skeleton is considered rigid, which means 
that u=0 at all points, and subsequently, its first and second derivatives in time (velocity 
and acceleration). After applying this simplification to the mathematical model, the 
Eqs.(1), (2) and (3) finally are expressed by means of Eq.(8): 
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Hence, the only remaining degrees of freedom at each point are the fluid phase 
displacement, w, along with its first and second derivatives in time. 
 
2.2. Numerical tools 
Eq.(8) is solved in the space domain by means of a Finite Element Method scheme, 
applying Galerkin’s Method of Weighted Residuals (Ottosen & Petersson, 1992; 
Zienkiewicz and Taylor, 2000). A mesh composed by quadratic, triangular elements are 
used. Thus, the weak formulation of Eq.(8) is given by Eq.(9): 
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where ���, ��� �, ��� � represent, respectively, the vectors of displacements, velocities and 
accelerations of the fluid phase in the space domain at both directions (x, y), and  ������   
contains the vector of external nodal forces, including hydrostatic boundary conditions 
due to the water level outside the porous media, as well as the gravity forces. [K], [C] 
and [M] represent the stiffness, damping and mass matrices.  
 
The Newmark’s step-by-step time integration scheme is employed in the time domain 
(Zienkiewicz and Taylor, 2000). An autoadaptative time integration scheme has been 
implemented, aiming to adapt the size of the time step to a limited numerical error in 
the approximation (Fernández-Merodo 2001). 
 

2.2 Boundary conditions. Iterative procedure 
     The presented model computed the free surface and total amount of discharge 
through porous media under steady conditions, meaning that both upstream and 
downstream water levels outside the domain remain constant. In order to do that, two 
types of boundary conditions must be applied: 

• Nodal forces at the upstream and downstream nodes, due to the hydrostatic 
pressures due to the external water levels: they are established at the beginning 
of the computation, and constant in a steady problem; 

• Impermeability boundary conditions: these are not constant, but they must be 
changed following an iterative procedure. In fig. 1, this procedure is summarized. 
It shows the Muskat problem (Plaxis, 2010), consisting of a rectangular, 
homogeneous earth dam, 3.22 m high, and 1.62 m wide, the water levels being 
3.22 m upstream (on the left) and 0.48 m downstream (on the right). In the first 
iteration, all the boundaries where there is no water outside the dam are let free, 
which means that the external imposed hydrostatic pressure is null at these 
locations, and then, fluid is free to pass through them (both coming in or going 
outside the geometry). If, after the end of the computation in this iteration (after 
reaching steady conditions), it is found that water comes into the soil through a 
boundary where it is not possible to happen, because there is no water outside 
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Q=1.39·1041 Pa. The rock foundation has been considered completely impervious, 
since it is a strong rock without generalized.   
 
4.3.Field measurements 
     A visit to the dam to collect measurements in the piezometers was made on 18th 
March 2010. The total amount of discharge (filtrations) was also recorded in the flumes 
installed downstream. It is worth to point out that, as it has been already mentioned, the 
reservoir level was at 624,50 meter over the sea level. This elevation remained 
constant since the previous two months, and thus, steady conditions can be assumed. 
A second visit to the dam was made on 8th July 2010, when new measurements were 
collected. The reservoir level had slightly decreased until 624,37 meters over sea level, 
and it was addressed that the measures in the piezometers and flumes had not 
suffered significant changes (only variations from 2 to 5 cm in the piezometers and 2 
mm in the flumes, corresponding to a total variation of discharge of 30 l/min, 
approximately, in a total discharge of 919.5 l/min).  This second visit allowed us to 
corroborate the steady conditions assumed for the previous one. A summary of these 
collected measurements are given in Tables 1 and 2, where values of real water levels 
inside the dam at piezometers PZ-C-3 and PZ-B-2 (according to Figs. 4b and 6) and 
total amount of discharges due to filtrations are reported. 
 

 

 

Fig. 6. Free surface position under steady conditions in the Gasset dam. Comparison 
between the real field piezometric levels and the numerical results obtained in the 

present research (free surface FEM). 
 
 

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Elevation (m)

Horizontal distance(m)

External outline of the dam

Increasing in 1984

Original cross section, 1900

Concrete wall, 1999

Drain

Free surface FEM

Free surface obtained with the measures in the piezometers

Piezometers

Reservoir level: 

624,50 m

h = 13.1 m

PZ-C-3

PZ-B-2



  

Table 1. Measurements in the piezometers of the Gasset dam (date or measurements: 
8th March 2010). (Bold and Italics indicate those piezometers located at the main cross 

section, used for comparison purposes at Fig. 6) 

Location 
of the 

piezometer 

Piezometer 
code 

Measurement 
(m) 

Elevation 
of the 
base of 
the dam 
(m) 

Elevation of the 
column of 
water (m) 

Elevation  of 
the free 

surface from 
the base in 

the 
piezometer 

(m) 

Top of the 
dam 

PZ-C-1 8.10 614.50 10.00 3.94 

PZ-C-2 7.73 612.00 12.50 6.81 

PZ-C-3 7.48 611.40 13.10 7.66 

PZ-C-4 7.98 614.00 10.50 4.56 

2nd shoulder 

PZ-B-1 6.12 614.50 10.00 0.22 

PZ-B-2 3.85 611.40 13.10 5.59 

PZ-B-3 4.66 614.00 10.50 2.18 

 
 

Table 2. Measurements in the flumes of the Gasset dam (date of measurements: 18th 
March 2010). 

Location of the 
flume Lecture (mm) Discharge (l/min) 

Right bank. 122 436.69 

Left bank 127 482.82 

 
Total 

discharge: 919.51 

 
 
4.4.Numerical results 
     In Fig.6 the computed free surface location inside the earth fill dam under steady 
conditions is sketched. The comparison of the numerical solution with the piezometric 
field measurements is also given in the same figure. It is remarkable the approximation 
obtained with the numerical computation. The small differences between the real field 
measurements and the numerical results could be due to several reasons, like cracks 
inside producing unexpected filtration networks to occur, or uncertainties and variability 
of the soil properties maybe because the earth dam is not as homogeneous as 
assumed (the dam was built in 1900). The approximation given by the numerical model 
is good enough to confirm that the developed numerical code of finite elements is 
reliable. In the piezometer located by the impervious wall, the computation yields a 
level 32 cm below the measurement, while the result given by the model at the 
downstream piezometer is 1.09 m higher than the real value. This two calculations fit 
fairly well to the field data, given a good approximation of the free surface, as is self 
evident just having a look to Fig. 6.  
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The maximum cross section of the dam at this stage is shown in fig. 7a. This section 
consists of the original earth dam (dated in 1900) and its modifications carried out in 
1984. Thus, it does not include the rockfill slope or the concrete wall either, since these 
works were done in 1999 in order to avoid the filtrations and to introduce deeper the 
piezometer level in the dam.  These filtrations indicated problems or leaking into the 
dam, or maybe, that the drain located at the base was not effective enough. According 
to the technical inspection carried out in 1998, the water was appearing in between first 
and second shoulders. 
The geotechnical parameters employed herein were the same than the previously used 
for the complete dam. The water level in the reservoir corresponds to a water column of 
13,85 meters above the basement of the dam (625,35 meters above the sea level). The 
computation yields a free surface position shown in fig. 7b. It can be realised from this 
result that, in this case, the level of the free surface touches the downstream boundary 
at the same location where water was actually found. Two sources of water can be 
identified from this computation: 

• The first one, located between the top of the dam and the upper platform. It is 
one small source because we can see how it comes back to entry into the earth 
dam.  

• The second one, located between the first and the second shoulder. This is the 
most important one, and can be identified as the one observed in 1998, which 
justified the works carried out in the dam in 1999.  

 
 
CONCLUSION 
 
     A new methodology for computing free surfaces in unconfined seepage problems 
has been applied to a real field case. The main conclusions obtained are summarized 
next: 

• The suitability of this new methodology for real, heterogeneous earth dams 
under steady conditions has been ascertained.  

• The numerical model is also valid for obtaining the total amount of discharge due 
to filtrations through the dam with high accuracy (error of 2‰), in spite of the 
simplicity and numerical efficiency of the presented formulation. 

• This tool can be helpful for aiming to understand pathologies inside the earth 
dam, and for optimizing the design of repair works.  

In summary: it has been ascertained the validity of the present formulation for real field 
cases. This tool is suitable to be employed for both designing new earth dams and 
upgrading old geostructures. 
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