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ABSTRACT 
 
     A three-dimensional analysis of transversely isotropic plates is performed, in which 5 
independent material properties must be introduced, that is, two Young’s moduli, two 
Poisson’s ratios and a shear modulus . Numerical approaches are usually employed for 
three-dimensional analyses of anisotropic bodies. However, an analytical approach is 
adopted in the present investigation. 
     Fourier analysis approach is applied to the analysis of simply supported rectangular 
plates and it is shown that we can simply establish general solutions which involve 6 
arbitrary constants, which can be determined completely by using traction boundary 
conditions on the top and bottom surfaces of plates. It follows from the solutions that 
the distinction between the surface tractions and the body force as lateral loads plays a 
key role in the three-dimensional bending analysis of plates. 
 
1. INTRODUCTION 
 
     Many research works have been presented in three-dimensional analyses of 
isotropic and anisotropic elastic plates. Pagano (1970) constructs three-dimensional 
exact solutions for rectangular laminates. Srinivas and Rao (1970) present a three-
dimensional, linear, small deflection theory of elasticity solution for the bending, 
vibration and buckling of simply supported thick orthotropic rectangular plates and 
laminates. By using the exact three-dimensional theory of elasticity, Wittrick (1987) 
discusses buckling problems and free vibrations of a simply supported rectangular plate. 
Kaprielian et al. (1988) and Mian and Spencer (1998) deal with a three-dimensional 
analysis of functionally graded and laminated elastic plates. Tabakov (2005) discuss 
mathematical aspects of the three-dimensional analysis of laminated orthotropic plates. 
Chang and Tarn (2012) develop a state space approach for three-dimensional analysis 
of rectangular orthotropic elastic plates. 
     In those studies, however, only surface tractions are considered as lateral loads of 
plates and a body force along the thickness is usually ignored. In the present 
investigation, a body force in the direction of plate thickness is also taken into account. 
And it is discussed that the distinction between the surface tractions and the body force 
as lateral loads has great influence on mechanical behaviors of anisotropic plates. 
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2. GOVERNING EQUATIONS OF ORTHOTROPIC PLATES 
 
     In the present investigation, orthotropic plates are dealt with. Especially, it is 
assumed that the materials of the plates are symmetric in two directions and there 
exists only one preferred direction. Namely, the materials are transversely isotropic. 
Governing equations for the transversely isotropic plates are derived in this section. 
 
2.1. Constitutive Equations 
     A unidirectional fiber-reinforced plate is shown in Fig. 1 as an example of the 
transverse isotropic plates. This example has a preferred direction along the fibers, that 
is, the x-direction, and is symmetric in the y-z plane. 
 
 

 

Fig. 1. A unidirectional fiber-reinforced plate. 
 
 
     Constitutive equations for transversely isotropic bodies are 
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where ( , , )x y zσ σ σ  and ( , , )x y zε ε ε  are normal stresses and strains; ( , , )xy yz zxτ τ τ  and 
( , , )xy yz zxγ γ γ  are shear stresses and strains; E  is a Young’s modulus in the x-direction 
and E′  in the y- or z-directions; ( )G E 2 1 ν≡ +  and ν  are a shear modulus and a 
Poisson’s ratio, respectively, in the y-z plane, and G′  and ν ′  in the x-y or the z-x planes. 
The inverse relations of Eq. (1) are given by 
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where E Eα ′≡  and 2

1c 1 2ν αν ′≡ − − . 
 
2.2. Governing Equations 
     Substituting Eq. (2) into the 3-D equilibrium equations, in view of the strain-
displacement  relations, we have the following equations: 
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where ( , , )U V W  are displacements in the x-, the y-, and the z-directions, t  is a 
thickness of plates, G Eβ ′ ′≡  and 2 1c cαν β′≡ + . In Eq. (3), only the body force in the z-
direction 0p t , which is constant, is considered and the body forces in the other two 
directions are ignored. The body force considered here corresponds to, for example, a 
dead load of plates. Note that the body force is usually ignored in the previous 
investigations. Equation (3) governs the bending behavior of transversely isotropic 
plates.  
 
3. FOURIER ANALYSIS 
 
3.1. General Solutions 
     Since fully simply-supported plates are dealt with in this paper, the displacements in 
the three directions can be expressed as the following trigonometric series: 
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The displacement field (4) satisfies the following geometrical boundary conditions a 
priori. 
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     Substituting Eq. (4) into Eq. (3), we have the simultaneous ordinary differential 
equations for determining ( )jkU z , ( )jkV z , and ( )jkW z . A matrix expression of the 
differential equations is 
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In order to obtain complementary solutions of Eq. (6), a characteristic equation is 
derived from the determinant of the coefficient matrix as 
 

( ) ( )
( ) { ( ) ( ) } ( )
( ) ( ) { ( ) ( ) }

( )[ ( )( )

{ ( ) } ( ) ( ) ]

2 2 2
1 k j 2 j k 2 j

2 2 2
2 j k 1 0 jk k k

2 2 2
2 j k 1 0 jk

2 2 2 2 2 2 2
1 0 jk 1 k

2 2 2 2 4
j k j

c d 1 c c d
2 1 c c d 1 1 d
2 1 c d 1 d c d 1 d

c d 1 c d

22 1 2 1 d 1 0

β µ ν λ λ µ λ
ν λ µ α κ ν µ α ν µ
ν λ α ν µ α κ ν

α κ β ν µ

ββ ν ν λ µ ν λ
α

− − − −
− + − − + +
− + − + − + +

= − + + −

′− − + − + − = .

   (7) 

 
The roots of the characteristic equation are 
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From Eq. (8), we can obtain a system of elementary solutions: 
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At this stage, we need to derive general solutions of the homogeneous equation of Eq. 
(6). In order to do that, the following set of solutions for 0 jkκ  is selected here: 
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where ( ) ( )i

jkA z   and ( ) ( ) ( )i
jkB z i 1 3= � are arbitrary constants. Substituting Eq. (10) into 

the homogeneous equation of Eq. (6), we have the following relation among the 
arbitrary constants ( ) ( )i

jkA z   and ( ) ( )i
jkB z : 
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Elementary row operations on the coefficient matrix gives us the following row-echelon 
form: 
 

.0 jk k

1 0 0
0 1
0 0 0

κ µ
⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

                                               (12) 

 
Therefore, we can find that the rank of the matrix is 2 and obtain arbitrary constant 
vectors for the solutions (10) as 
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In the similar manner to the above process, we obtain constant vectors for solutions 
corresponding to 1 jkκ  and 2 jkκ . Thus we can derive general solutions of Eq. (6) as 
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where a particular solution for ( )jkW z  is included and jkA  to jkF  are arbitrary constants. 
 
3.2. Traction Boundary Conditions 
     The 6 arbitrary constants jkA  to jkF  are determined by applying the traction 
boundary conditions on the top and bottom surfaces of plates. Those traction boundary 
conditions are given by 
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By using these 6 boundary conditions, we can determine the 6 arbitrary constants jkA  
to jkF  as 
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where 
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In addition, the lateral loads of plates ( , ) ( )ip x y i 0 2= � , which include the body force, 
are assumed to be expanded into Fourier double series as 
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Note that influence of the body force is included in Eqs. (19), (21), and (23). 
 
4. INFLUENCE OF BODY FORCE 
 
     As mentioned before, the effect of the body force in the lateral direction has been 
almost ignored in the previous investigations. However, it is apparent from Eqs. (18) to 
(23) that the body force deeply affect bending behavior of plates. Although the surface 
tractions on the top and bottom surfaces of plates are included in all the 6 constants 

jkA  to jkF , the body force is not included in jkA , jkC , and jkE . Therefore, when we 
consider only the body force as a lateral load of plates, the deflection must be 



  

symmetric with respect to the mid-surface of plates and the in-plane displacements 
anti-symmetric. On the other hand, when we ignore the body force, we cannot 
distinguish the symmetry and the anti-symmetry in the bending behavior of plates. Thus 
it is clear that the distinction between the surface tractions and the body force as lateral 
loads of plates plays a key role in the three-dimensional bending analysis of plates. 
     Numerical examples of transversely isotropic plates will be presented at the 
conference. In this section, examples of isotropic plates in Suetake (2007) are 
presented in order to show differences among mechanical behaviors of plates under 
the surface traction and the body force. Such numerical examples are shown in Fig. 2 
and Fig. 3, in which solid lines indicate results of the body force case and broken lines 
results of the surface traction case. In both figures, the vertical axis indicates a non-
dimensional coordinate along the thickness, z tζ ≡ . Distribution of an in-plane 
displacement along the thickness at ( , ) ( , )x y a b 2=  is shown in Fig. 2, in which a non-
dimensional in-plane displacement U a  is depicted against ζ . On the other hand, 
distribution of a transverse shear stress along the thickness at ( , ) ( , )x y a 4 b 4=  is 
shown in Fig. 3, in which a non-dimensional transverse shear stress * {( ) } zx1 2 2Gτ ν τ≡ −  is 
depicted against ζ . 
     It can be seen from both figures that differences between the body force and the 
surface traction cases are outstanding even in bending behaviors of isotropic plates.  
Therefore we can expect that more outstanding differences are found in the analyses of 
anisotropic plates. In addition, it is expected that a drilling rotation of plates, 

U y V x∂ ∂ −∂ ∂ , does not become zero under only lateral loads in the analyses of 
anisotropic plates. 
 

 

Fig. 2. In-plane displacement distribution      Fig. 3. Transverse shear stress distribution 



  

CONCLUSION 
 
     In the present investigation, a three-dimensional analysis of anisotropic 
elastic plates is dealt with, in which material of plates is assumed to be 
transversely isotropic. Through the Fourier analysis, an exact solution is 
derived for simply supported rectangular plates with any thickness. 
Especially, the body force effect is taken into account in the present 
solution. It follows from the solutions derived here that the distinction 
between the surface tractions and the body force as lateral loads has great 
influence on mechanical behaviors of plates. 
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