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ABSTRACT 

 The difficulty in aeroelastic analysis basically arises from the frequency dependence of 
the aeroelastic forces. Therefore, the frequency dependence should be eliminated for 
the time-domain analysis of the aeroelastic system by applying the convolution integral 
approach.  However, the convolution integral is valid if the impulse response function 
vanishes for t<0, which is referred to as the causality condition. Although the RFA is the 
most well-known approach to adjust the flutter derivatives for satisfying the causality 
condition, the RFA shows the limitation in application of the bluff section.  In this study, 
a new modification method is presented by optimization with penalty function and the 
proposed method is verified via two numerical examples of thin rectangular section and 
bluff H-type section. 

1. INTRODUCTION 

     The difficulty in aeroelastic analysis basically arises from the frequency dependence 
of self-excited forces.  Although they are given in the time domain, the self-excited forc-
es proposed by Scanlan and Tomko are essentially based on transfer functions be-
tween deck motions and the self-excited forces in the frequency domain.  Therefore, an 
aeroelastic analysis in the frequency domain (Katsuchi 1999) is more widely employed 
than one in the time domain (Chen 2000). However, the importance of time-domain 
analysis has been increasingly recognized for investigating structural nonlinearities and 
transient responses caused by non-stationary wind (Chen 2003). The difficulty of the 
time-domain aeroelastic analysis arises from the frequency dependence of the self-
excited forces defined by flutter derivatives.  Without the elimination of the frequency 
dependence, a frequency-domain analysis should be performed for a time-domain 
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analysis to obtain frequency information on deck motion. To circumvent this complexity, 
the rational function approximation (RFA), which expresses aerodynamic forces by the 
convolution of deck motion using impulse response functions, has been widely adopted 
(Chen 2000). Since, however, the RFA is the extension of the method that has been 
used in the aeronautical field for the application to a wing of an airplane, there is a cer-
tain limitation to apply the RFA for the bluff sections frequently selected in bridge de-
sign (Caracoglia 2003). This study presents a new approach for evaluating impulse re-
sponse functions for the convolution integrals of aerodynamic forces using optimization 
in the frequency domain. 

2. EVALUATION OF AERODYNAMIC FORCES 

   A section model with two degrees of freedom in vertical (h) and rotational ( ) direc-
tion is subjected to self-excited forces in the direction of each DOF. Then, the equation 
of motion per unit length is expressed as follows: 
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where mi, ci and ki are the mass, damping  and stiffness in the direction of i=h, , re-
spectively, while Lae, Mae, Lex, Mex are the self-excited lift force, moment and external 

excitation forces in the h and  direction, respectively.  The overhead dot denotes dif-
ferentiation with respect to time. 
   In accordance with the Scanlan and Tomko’s formulation(Scanlan 1971), the self-
excited forces acting on a sinusoidally oscillating section in a single frequency are de-
fined as: 
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where  is the air density, U is the mean wind velocity, B is the width of the section 

model. K=B /U is the reduced frequency where  is the angular frequency of the oscil-

lation.  The flutter derivatives are denoted as *

m
H  and *

m
A  (m=1,2,3,4), and are func-

tions of the angular frequency.
   The general solution of Eq. (1) consists of the homogeneous and particular solution. 
In case the aerodynamic forces are defined as Eq. (2) proposed by Scanlan and Tomko, 
the particular solution of Eq. (1) is easily determined for given external harmonic excita-
tion forces. However, it is difficult to obtain the homogeneous solution of Eq. (1) be-
cause the aerodynamic forces of Eq. (2) are dependent on unknown modal frequencies 
and shapes of the 2-DOF system. To circumvent this computational complexity, the 
aerodynamic forces are usually defined in the frequency domain as follows: 



)(
)()(

)()(

)(

)(

)(

)(

)()(

)(

2

1

)(

)(
*

3

2*

2

22*

4

2*

1

2

*

3

2*

2

2*

4

2*

1

2

2

uF
FF

FF

F

hF

ii

ii

F

hF

AKAiKBAKAiKB

HKHiKBHKHiK
U

MF

LF

h

hhh

RIR

h

I

h

R

h

I

h

R

hh

I

hh

ad

ad

(3)

where F denotes the Fourier transform, and i is the imaginary unit.  I

mn
 and R

mn
 are the 

imaginary and real part of transfer function, respectively. 
mn

 is the impulse response 

function representing the aerodynamic force in the m direction at time t induced by the 
unit impulse motion of a section in the n direction at 0t .  Since no aerodynamic force 

is generated before the section moves, the causality condition should be satisfied, that 
is, the impulse response function vanishes for 0t  (Jung 2012).  As the flutter deriva-

tives are given, the impulse response function is readily obtained by the inverse Fourier 
transform of the transfer function:
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Since the impulse response functions should be real-valued functions, the causality 
condition of the impulse response function is expressed as follows: 
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 Utilizing the convolution theorem of the Fourier transform, the aerodynamic forces in 
the time domain are evaluated by the following convolution integrals: 
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   The flutter derivatives are extracted at several discrete frequencies, and thus the 
transfer functions are defined discretely as well at the extraction frequencies rather than 
in a continuous fashion.  To perform the integration in Eqs. (4) and (5), each part of the 
transfer function between two adjacent extraction frequencies is interpolated. The inter-
polation function for the transfer function plays the same role as a finite element in the 
finite element method, and should be selected to approximate real transfer functions 
accurately with the finite number of the extraction frequencies. Cubic spline, which is a 
piecewise 3rd-order polynomial (Kreyszig 1999), is selected to form a smooth and con-
tinuous function without derivative information. 



3. EVALUATION OF IMPULSE RESPONSE FUNCTIONS BY OPTIMIZATION 

 The measured transfer functions should be modified so as to vanish identically in the 
negative time domain.  This modification procedure is defined as an optimization prob-
lem for finding a transfer function closest to the measured transfer function subject to 
the causality constraint. 
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where R

mn
 and I

mn
denote the real and the imaginary part of the modified transfer func-

tion, respectively, and 
mn

w  is a prescribed weighting factor ranging from 0 to 1, which 

adjusts the relative weight between the real and imaginary part of the transfer function 
in the optimization.  The normalization of each term in the object function is applied to 

level the magnitude of each term.  The L2 norm of a function is denoted as 
2L
 in Eq. 

(7).
   Since the causality condition contains an independent variable, i.e., time t, it is difficult 
to enforce the constraint in a strong sense.  Rather, in this study, the causality condition 
is imposed in a weak sense using the penalty function approach. 
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   Here, 
mn

 and maxT  are the penalty number and the maximum time duration for the 

time integration of the penalty term, respectively. The time duration for the time integra-
tion of the penalty function is assumed to be the same as the maximum time used in 

the time-domain analysis of Eq. (1).  The equal weighting of 5.0
mn

w  yields balanced 

results for all cases examined in this study.  The weighting factor may be adjusted for a 
balanced solution, if necessary. 
   The penalty number controls the strength of the causality condition imposed in the 
optimization.  As the penalty number becomes smaller, the effect of the causality condi-
tion on the solution of the optimization problem of Eq. (8) becomes weaker, and the so-
lution converges to the measured transfer function. The one-sided convolution integrals 
for the aerodynamic forces lose mathematical robustness for a small penalty number 
due to the violation of the causality condition.  On the other hand, the causality condi-
tion has a dominant influence on the optimization for a large penalty number, and the 



solution deviates from the measured transfer function, which causes Eq. (1) to yield so-
lutions inconsistent with measured responses. Therefore, it is very crucial to determine 
a well-balanced penalty number for obtaining an accurate and mathematically meaning-
ful solution of Eq. (1) in the time-domain aeroelastic analysis.
   A series of extensive numerical tests conducted in this study revealed that the penalty 
number that reduces the penalty function to 2% of its original value before the optimiza-
tion yields well-balanced solutions, and that the order of magnitude of the optimal pen-
alty number usually is about 10-1.  Since a solution obtained in the penalty function for-
mulation does not sensitively vary with the penalty number, a penalty number of 0.1 
may be selected without further calculations.  For more precise solutions, however, the 
optimization problem of Eq. (8) has to be solved for several different penalty numbers 
to find the penalty number satisfying the aforementioned criterion. 

4. NUMERICAL EXAMPLE OF THE SECTION MODEL 

   The validity of the proposed method is demonstrated through the example on a bluff 
H-type section.  The transfer functions and the corresponding impulse response func-
tions evaluated by the proposed method and RFA are presented. The flutter derivatives 
are extracted from forced vibration tests in wind tunnel. The experiment for a bluff H-
type section was performed by King at el. at the Boundary Layer Wind Tunnel Labora-
tory of the University of Western Ontario in Ontario, Canada (Kim 2007). 
   Fig. 1 shows the transfer functions in the lift direction. The proposed method yields 
relatively well-matched results to the measured transfer functions, which show more 
complicated variations.  Although the RFA yields somewhat different results from the 

proposed method, the differences found other than in the h component appear to be 

acceptable.  However, the RFA yields completely inconsistent results for the h com-

ponent with the measured transfer function. In Fig. 1(b) and Fig. 1(d), the h compo-
nent evaluated by the RFA is drawn against the right vertical axis, which has a 20 times 

larger scale than the left axis. The real and imaginary parts of the h component ob-
tained by the RFA suddenly increase rapidly in an almost diverging fashion for the re-
duced frequency smaller than 1.0. This implies that the RFA yields unreliable results of 
a time-domain analysis for high wind velocities, which are of engineering importance in 
the design of a bridge. 
   Fig. 2 shows the impulse response functions obtained by the three approaches. It is 
clearly seen that the measured impulse response functions do not satisfy the causality 

condition. Especially, the causality of the h  component is severely violated.  However, 
the proposed method restores the causality conditions for all of the regular components 
of the impulse response functions within the specified tolerance. The RFA results in 
very unstable impulse response functions, which increases rapidly as the dimension-

less time approaches zero.  The h  component of the impulse response function ob-
tained by the RFA is drawn against the right vertical axis.  The scale of the right vertical 
axis is 4 times larger than the left vertical axis.  Unlike the other components, the RFA 

yields an increasing h  component with time in absolute sense, which is completely un-
reasonable from a physical point of view.  As the impulse response function represents 
the influence of a unit motion on the aerodynamic forces at time t, the absolute value of 
the impulse response function should be a decreasing function with time.



5. CONCLUSION 

   A new approach is proposed for evaluating the impulse response functions required 
in the convolution integrals of aerodynamic forces acting on bridge decks.  As the trans-
fer functions formed by measured flutter derivatives generally violate the causality con-
dition of the impulse response functions, an optimization scheme, in which the causality 
condition is imposed as a penalty function, is formulated in order to find the transfer 
functions closest to the measured ones. The transfer functions are interpolated with the 
cubic spline between two adjacent extraction points of the flutter derivatives. It is be-
lieved that the RFA has certain deficiencies in terms of determining the correct impulse 
response functions of bluff sections.  Meanwhile, the cubic spline utilized in this study is 
able to fit a wide range of curves in a piecewise fashion with sufficient smoothness.
Consequently, the proposed method can be applied to not only streamline sections with 
nearly monotonic transfer functions but also bluff sections with wiggling transfer func-
tions.

 (a) (b)

 (c)               (d)

Fig. 1. Transfer functions of the bluff H-type section for the lift force: (a) imaginary part 

of the hh component, (b) imaginary part of the h  component, (c) real part of the hh

component and (d) real part of the h  component (The h  component of RFA is drawn 
against the right vertical axis) 
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(a)

(b)

Fig. 2. Regular component of the normalized impulse response functions of the bluff H-

type section: (a) hh component and (b) h  component (The h  component of RFA is 
drawn against the right vertical axis)
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