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ABSTRACT 

 
This paper proposes a new approach to identify the flutter derivatives by minimizing 

an equation error estimator (EEE) which is defined as the least-square errors between 
structural resistance forces and aeroelastic forces induced by wind.  Dissimilar to the 
other SI algorithms, the proposed method can successfully employed for the 
identification of flutter derivatives regardless of the experimental procedure and does 
not require any complicated sensitivity analysis or complex eigen-value analysis to 
identify the unknown system parameters.  The EEE requires complete information on 
the state variables at all-time steps.  In the proposed method, accelerations of a section 
model are measured with accelerometers in wind tunnel tests while the velocities and 
displacements corresponding to the measured accelerations are reconstructed by the 
FEM-based finite impulse response filter (FFIR filter). The validity of the proposed 
method is demonstrated through both free vibration test and forced vibration test of 
bridge sectional models in the wind tunnel. It is shown that the flutter derivatives 
identified by the proposed method agree well with those by previous methods.  
 
 
1. INTRODUCTION 

 
After the flutter derivative based aeroelastic formula had been by Scanlan, great 
number of efforts have been made to estimate the flutter derivatives from the test of 
bridge model in wind tunnel.  The flutter derivatives can be identified with different 
experimental procedures from an idealized 2-DOF section model, i.e. forced-vibration 
test and free-vibration test.  The most widely adopted technique is the free-vibration 
method. Scanlan and Tomko proposed the extraction scheme for flutter derivatives 
from 2DOFs coupled motion tests (1971).  Sarkar developed the Modified Ibrahim Time 
Domain (MITD) to estimate cross flutter derivatives along with direct flutter derivatives 
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(1994).  The procedures of these approaches are generally based on the response 
error estimation, which minimizes the relative error between measured displacement 
and predicted displacement.  Although free-vibration technique requires relatively 
complicated procedure to identify the flutter derivatives and need additional assumption 
because of the uncertainty of frequency similarity, but it is appealing for the simple 
setup and the possibility for the realization of interaction between the structure and the 
wind.  

A more reliable procedure is forced-vibration method [Diana 2004, Falco 1992, Kim 
2007 and Matsumoto 1993] in the sense of the law of similarity.  As the selection of the 
experimental procedure, different numerical algorithms are employed for the extraction 
of the flutter derivatives.  Numerous SI algorithms used for the free-vibration technique 
is inappropriate for the steady state response of the forced-vibration test and vice versa.  
As far as the author knows of, the general algorithm that can be employed for 
extraction of flutter derivatives regardless of the testing procedures has not been 
proposed yet. 

This paper proposes a new approach to identify the flutter derivatives by minimizing 
an equation error estimator (EEE) [Hjelmstad 1995] which is defined as the least-
square errors between structural resistance forces and aeroelastic forces induced by 
wind.  Dissimilar to the other SI algorithm, the proposed method can successfully 
employed for the identification of flutter derivatives regardless of the experimental 
procedure and do not require any complicated sensitivity analysis or complex eigen-
value analysis to identify the unknown system parameters. 

The EEE approach requires not only displacement response but also velocity and 
acceleration history for system identification. In this approach, a displacement and 
velocity reconstruction scheme [Hong 2010] is used to calculate displacement and 
velocity history from measured acceleration.  Hence, both these reconstructed 
responses and the measured acceleration is used for EEE method. 
 
2. ESTIMATION OF FLUTTER DERIVATIVES 

 

2.1 Equations of motion for the free vibration test 
 
In this paper, a section model for the wind induced vibration is assumed to have two 
degrees of freedom in vertical ( h ) and rotational ( α ) direction.  The equations of 

motion per unit length for the section model can be expressed by following equations. 
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where KCM ,,  and 
ae

F are the mass, damping, stiffness matrix of the structural system 

and the aeroelastic force vector, respectively, while U , U  and X are the displacement 

vector containing h and αthe flow field and the vector of the flutter derivatives which will 
be defined in next section.  The overhead dot denotes differentiation with respect to 
time. 

The aeroelastic force acting on a sinusoidal oscillating section model in a single 
mode is assumed as a linear function to the motion of the section and its first order 
derivative [Iwamoto 1995 and Scanlan 1971]: 
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where 
ae

L
 
and

ae
M

 
are the aeroelastic lift force and moment, respectively, while  is the 

circular frequency of the oscillation, and 
m

H  and 
m

A
 
( 4,3,2,1=m ) are the flutter 

derivatives.  It is customary to use normalized expressions of the flutter derivatives 
[Scanlan 1971].  For the simplicity of presentation, however, this thesis presents 
discussions with the un-normalized forms of the flutter derivatives. 
 
2.2 Equation error estimation (EEE) 
 

In case the complete time history of displacement, velocity and acceleration are 
available, the flutter derivatives are identified by employing the EEE as follows: 
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here, X is the vector of the flutter derivatives to be identified. 
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tXF  are the structural resistance force and the aeroelastic force at time 

ti, respectively.  
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The aeroelastic force given in (4-28) is rewritten in terms of the vector of the flutter 
derivatives. 
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Following the solution procedure of the EEE method in Eq. (3) ~ Eq. (6), a unique 
solution is always determined by Eq. (6) as long as a sufficient amount of measured 
dynamic responses of a section model are provided. 

Since the unknown force in Eq. (6) is linear with respect to the system parameter, 
X , the minimization problem in Eq. (3) forms a quadratic problem with respect to the 



  

system parameter.  Hence, the solution of Eq. (3) is simply obtained by solving the first-
order necessary condition for the quadratic problem, which is linear algebraic equation.  
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where S  and G  are global sensitivity matrix and gradient vector expressed as following 

equation, respectively. 
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3. RECONSTRUCTION OF DISPLACEMENT AND VELOCITY HISTORY FROM 

MEASURED ACCELERATION 

 

Hong et al. have proposed a new class of FEM-based finite impulse response (FFIR) filter to 
reconstruct displacement and velocity simultaneously. In their approach, the displacement is 
reconstructed by solving the following minimization problem defined in a time interval, 

21
TtT << . 
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where u and a are the displacement and the measured acceleration, respectively. 

The direct discretization of the variation statement of Eq. (6) with the finite element 
method using k2 -th elements leads to a FFIR filter.  
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Here, e

u  and e

a  denote the displacement and acceleration in element, e, respectively.  

The standard FEM formulation for a beam on an elastic foundation is adopted to derive 
the following matrix expression of Eq. (10). 
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where u and a  denote the nodal unknown vector and the measured acceleration vector 

associated with all sampling points of measurement.  The nodal unknown vector 
consists of the nodal displacements and the nodal velocities. The matrixes in Eq. (11) 
are defined as  
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where ∑
e

is the assembly operator of the FEM, and ξ is the natural coordinate for the 

time variable ranging from 0 to 1, 
H

N  and 
L

N  are Hermitian shape function and the 

linear shape function, respectively. The nodal unknown vector is obtained by solving Eq. 
(11). 
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where C is the coefficient matrix of order )12()12(2 +×+ kk .  

Assuming the time step at the center of a time window represents time t, the 
reconstructed displacement and velocity are expressed as following equations 
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4.  EXPERIMENTAL VERIFICATION 

 
For the verification of the proposed method for the free-vibration test, the flutter 
derivatives are identified using measurements taken from a series of free-oscillation 
tests for a thin rectangular plate with the width-to-depth  (B/D) ratio of 20.  The flutter 
derivatives are identified by the proposed method using the measured accelerations 
and by the MITD method using the measured displacements for comparison.  The 
identified results from both of the methods presented here are the representative 
values for multiple measurements.  The flutter derivatives identified for each 
measurement are averaged for the MITD method, while multiple measurements are 
considered together in optimization for the proposed method.  Same B/D20 deck 
section also tested by the forced vibration test.  In this testing procedure, the 
sisnusoidal fitting method is adopted for the comparision.  

Fig. 1 and Fig. 2 show the flutter derivatives for the free vibration test and the 
forced vibration test, respectively. The proposed method yields well-matched results 
compared to the MITD method and the sinusoidal fitting method for all eight of the 
flutter derivatives in an overall sense. 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Identified flutter derivatives from the free vibration test for the B/D20 section -
*
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Fig. 2 Identified flutter derivatives from the forced vibration test for the B/D20 section -
*
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CONCLUSION 

This paper proposes a new approach to identify the flutter derivatives by minimizing an 
equation error estimator (EEE) which is defined as the least-square errors between 
structural resistance forces and aeroelastic forces induced by wind.  The results of EEE 
method have a good agreement with the results of the conventional methods. 
Dissimilar to the other SI algorithms, the proposed method can successfully employed 
for the identification of flutter derivatives regardless of the experimental procedure and 
does not require any complicated sensitivity analysis or complex eigen-value analysis 
to identify the unknown system parameters 
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