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ABSTRACT 
It has been shown that building interactions can play an important role in the 

dynamic response of a structure. Existing approaches can be categorized as either 
lumped-mass models or finite element methods. The latter are computationally 
expensive and only possible for relatively small-size cluster configuration. To alleviate 
the computational requirements a generic nonlinear mathematical model has been 
developed to analyze the interactions between adjacent structures via the soil. The 
current analysis focuses on a small-size cluster, but the model is expandable to an 
arbitrary number of nodes both in the horizontal and vertical plane. In this work we 
derive the governing equations of the system, including models for superstructures 
(shear-wall model), soil (hysteretic) and actuation (real-life earthquake data). A 
comparison between the results of the nonlinear system to those of the linear one 
shows significant frequency shifting. Furthermore, this work gives insight of the group 
dynamic behavior in comparison to the performance of a stand-alone structure. 
 
1. INTRODUCTION 

The recent series of earthquakes in Canterbury, New Zealand has prompted 
questions regarding the completeness of current design codes and methods. A major 
assumption in current design codes is the neglecting of interactions between 
neighboring structures. These building interactions are henceforth referred to as Soil 
Structure Soil Interactions (SSSI). The theory around SSSI has been developing since 
the 1970’s [1]. According to more recent works by Uenishi [2] and Gueguen et al. [3] 
SSSI can play significant roles in the structural response of a building subjected to 
strong ground motion, especially for an array of structures on softer soil conditions [3]. 
Both groups [2, 3] have recently developed and analyzed the dynamics of linear 
analytical models, which subsequently revealed global mode shapes for one-
dimensional (1D) array configurations and uncovered the mechanisms causing unusual 
damage patterns in earthquakes such as in the Friuli, Italy earthquake (1976) [2]. A 
more detailed overview about existing models that focus on neighboring structure 
interactions and the so called ‘town effect’ is given by Uenishi [2]. His review of existing 
literature states that most approaches aim at the ‘macroscopic’ (global) city-scale point 
of view, e.g. [4], and that a systematic study in view of the ‘microscopic’ (local) behavior 
of each building (resonator in the array) is missing. 



  

The fundamental, scientific study of coupled oscillators goes all the way back to 
the seventeenth century [5, 6], where Christiaan Huygens observed mutual 
synchronization of pendulum clocks coupled via a common base. With the rise of nano-
technology in the twentieth century, collective phenomena of coupled systems have 
been re-discovered and studied for mainly nano- and micro-mechanical systems [6-10]. 
Unlike the focus in macroscopic applications (e.g. the study of town effects of civil 
structures), the focus in studying nano- and micro-arrays lies on the individual 
performance of each resonator within the cluster rather than the global behavior. Thus, 
that which appears to be unknown for coupled macro-structural arrays, namely the 
desired individual performance within a cluster, has been studied elsewhere and for 
other applications, and hence, the existence of certain occurring phenomena such as 
energy transfer and global vibration modes are not new. Generally, the coupling 
mechanisms of micro- and macro-structure arrays alike follow nonlinear characteristics. 
It is well known that for nonlinear coupled resonators there occur special phenomena, 
such as bifurcation points, multiple coexisting solutions, energy transfer, loss of stability 
leading into chaotic (unpredictable) behavior as well as intrinsic locking of individual 
members [11-13]. 

In order to study the individual dynamic performance of a single building while 
the same is subject to seismic group dynamics, this paper introduces a simple 2D 
mathematical model and a 1D analysis of a superstructure cluster and a hysteresis 
model capturing the soil interactions. This work presents preliminary results and a 
comprehensive, systematic, nonlinear analysis will be published elsewhere.  
 
2. THE MATHEMATICAL MODEL OF SUPERSTRUCUTRE, SOIL AND ASSEMBLY 

The mathematical, computational model of a coupled 4x1x2 building cluster is 
derived in three parts: the superstructures, the soil and the coupled assembly. The 
small-size cluster is deduced from a generic approach that allows for an arbitrary 
number of floors as well as neighbor buildings. The formulation only considers nearest 
neighbor interactions via the soil.  
 
2.1 Superstructure Model and Eigenvalue Problem 

The superstructures have been modeled using a linear shear building model with 
translational degrees of freedom in the horizontal ݕݔ -plane, see Figure 1a. The 
foundation mass of each building is representative of the surrounding soil mass as well 
as the buildings foundation. Figure 1a shows the shear wall model applied to a single 
building system, whereas Figure 1b depicts the array configuration. It should be noted 
that although Figure 1b suggests a cluster of four two-storey buildings, each building is 
designed for a select fundamental natural frequency (or period), thus representing a 
variety of real-life civil structures, independent of size and number of floors. Hence, we 
will refer to the degrees of freedom as ‘base’ and ‘top’ of structures, rather than ‘floors’. 
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2.2 Nonlinear, Hysteresis Soil Model  
The soil behavior is modeled using an extended Masing model, see Figure 2. In 

this model the soil stress is a function of soil strain as well as the time history of the soil 
displacement. Figure 2 depicts an arbitrary characteristic of a possible soil behavior. 
Realistic parameters that determine the soil properties of interest would need to be 
deduced from selected core samples in the area, which is not pursued in this paper. 
Instead estimated parameters are used to study the dynamic behavior qualitatively. 

Figure 2: Hysteresis schematics of soil mechanisms. 
Initially, the stress/strain state starts at (0, 0) and upon increased loading follows the 
back bone curve (denoted by dashed black line). If a reversal of the loading direction 
occurs (indicated by a change in color) then the stress/strain behavior departs the 
backbone curve and follows a modified stress/strain curve. The stress/strain behavior 
returns to the backbone curve upon intersecting with the same, and also returns to the 
previous curve if crossing it.  

 
2.3 Governing Equations of the Assembly (4x1x2 building cluster and soil)  

The coupled cluster of buildings is created by arbitrarily grouping a set of nodes 
in the horizontal plane. The building foundation nodes (marked in red in Figure 1a) are 
surrounded by a set of reference nodes, which serve as excitation locations. As the 
intensity of excitation of the system is determined according to the hysteresis 
characteristic, it is convenient to solve the system in the time domain by numerical 
integration. At each time step all base nodes are computed to determine the soil strains 
and the resulting forcing on each building in the array. The instantaneous forces are 
then applied to the respective buildings and integrated over a single time step. Figure 3 
presents the computation algorithm of the coupled, linear and nonlinear cluster model. 
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Figure 3: Solution flowchart: Simple harmonic motion 
 
  

• Formulate ࡹ,,ࡷ matrices for each superstructure from chosen parameters  
(note: formulation differs from eigenvalue problem introduced above) ࡷ - tridiagonal structure with inter-foundation coupling terms ࡹ - diagonal structure with masses of each building  - tridiagonal structure with inter-foundation coupling terms 

• Create state space formulation for each superstructure: ࢞ሶ ൌ  ࢞   ࢌ	۰
• Define soil shear stiffness parameters 

NON-LINEAR ANALYSIS 
• Use input displacement at current time step ࢚  

and nodal positions at ࢚ିଵ to determine strains 
in the ‘soil’ 

• Determine stress at ࢚ using hysteresis curve 
and strain history 

 
• Resolve forces into ݔ and ݕ components 
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acceleration at ࢚. (explicit Runge Kutta 4) 

• Iterate until steady state is reached 
• Loop through frequency range of 

interest 

LINEAR ANALYSIS 
• Use input displacement at 

current time step ࢚  and nodal 
positions at ࢚ିଵ to determine 
strains in the ‘soil’ 

• Resolve base floor forces 
using Hooke’s Law 

• Resolve forces into ݔ and ݕ 
components 

Produce the response spectra 



  

3. ANALYSIS 
3. 1 Frequencies and Vibration Modes of Building Cluster 

A first analysis is that of considering the eigenvalue problem of the linear system 
(see Section 2.1). Eq. (1) has solutions for precisely eight eigenvalues of ߱. The related 
eigenvectors ෝ  determine the synchronized motion of the cluster at these values, 
including intrinsic building mode shapes as well as global in- and out-of-phase inter-
building motion patterns. Figures 3 and 4 show the collective vibration modes of the 
cluster for stiff and soft soil properties, respectively.  
                                              Bldg. 1                  Bldg. 2                   Bldg. 3                   Bldg. 4 

Mode 1 
 

ଵ݂ ൌ 0.4100	Hz

Mode 2 
ଶ݂ ൌ 0.9933	Hz

Mode 3 
ଷ݂ ൌ 1.3956	Hz

Mode 4 
ସ݂ ൌ 2.3013	Hz

Mode 5 
 

ହ݂ ൌ 4.4364	Hz

Mode 6 
݂ ൌ 5.7791	Hz

Mode 7 
݂ ൌ 7.0109	Hz

Mode 8 
଼݂ ൌ 7.8141	Hz

Figure 4: Global mode shapes of the 4x1x2 building cluster for stiff soil properties; red crosses: base 
motion, blue circles: top motion; modes are scaled to the maximum value of modal building 
displacement of each mode. 

For a building cluster on stiff soil, the behavior for lower frequencies (modes 1-4) 
decouples, which means that the dynamics of one building has no or little influence on 
the dynamic behavior of another, neighboring building. For higher frequencies (modes 
5-8), the common soil couples the behavior of buildings and the cluster shows 
assembly rather than individual vibration modes. In contrary, Fig. 5 shows that for a 
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cluster on soft soil each building moves simultaneously in an assembly or global mode 
for lower frequencies (modes 1-4).  

 
                                               Bldg. 1                  Bldg. 2                   Bldg. 3                   Bldg. 4 

Mode 1 
ଵ݂ ൌ 0.2812	Hz

Mode 2 
ଶ݂ ൌ 0.3355	Hz

Mode 3 
ଷ݂ ൌ 0.4222	Hz

Mode 4 
ସ݂ ൌ 0.5083Hz

Mode 5 
ହ݂ ൌ 0.7880	Hz

Mode 6 
݂ ൌ 1.5031	Hz

Mode 7 
݂ ൌ 2.0993	Hz

Mode 8 
଼݂ ൌ 3.6489	Hz

Figure 5: Global mode shapes of the 4x1x2 building cluster for soft soil properties; red crosses: base 
motion, blue circles: top motion; modes scaled to the maximum value of modal building displacement 
of mode. 

For higher frequencies (modes 5-8) the cluster behavior decouples and individual 
building motion is observed. This observation can be explained in terms of the eigen-
dynamics of the soil. The eigen-dynamics of the soil (soft or stiff) acts like a filter. In a 
certain frequency range it will magnify input signals, while outside this (these) range(s) 
it will attenuate them, which is revealed in the observed coupled and decoupled system 
behavior. 
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3. 2 Response of the Building Cluster to Harmonic Input Functions 
The eigen-behavior of the 4x1x2 building cluster including the hysteretic nature 

of the soil has been analyzed by means of harmonic input signals over a frequency 
range of 0 to 4 Hz. Figure 6 shows the response spectra of the linear and nonlinear  

models of the cluster for stiff and soft soil properties. The linear model comprises small 
input amplitudes, forcing the strains to lie on the linear section of the backbone curve. 
The transfer functions for stiff and soft soil properties show rather distinct 
characteristics. The transfer behavior of the cluster on stiff soil shows a decoupled 
motion of individual buildings (see Figs. 6 a, b) at lower frequencies (below 1 Hz). At a 
frequency of approximately 3.5 Hz the cluster undergoes a motion in an assembly 
mode, i.e. all four buildings move in a particular synchronized motion (compare with 
mode shapes of the eigenvalue problem, Fig. 4). The transfer behavior of the cluster on 
soft soil, however, shows a coupled motion for lower frequencies while it decouples for 
higher frequency ranges. Investigations of the frequency responses subject to harmonic 
input signals validate the findings of the eigenvalue problem in the previous section. 

a) c) 

b)  d) 

Figure 6: Comparison of frequency responses to a harmonic input for stiff (a, b) and soft (c, d) soil. a), 
c) small input amplitudes; b), d) large input amplitudes. Solid lines: base; dashed lines: top. 
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There are several peaks (for both stiff and soft soil response curves) that were not 
identified. A possible answer to this question can be found by systematically studying 
the influence of the damping mechanisms of the whole system, including the soil, 
superstructures and inter-building interactions. 
A close-up view of system, represented by e.g. building 3 on soft soil reveals the 
nonlinear nature of the behavior. Fig. 7 shows the response curves of the base for a 
small and large input amplitude.  
 

 
 
 
 
 
 
 
 
 
 
 
 
A clear shift of frequencies can be observed toward lower frequencies as well as an 
abrupt jump at 0.22 Hz for the case of large input amplitudes. The bending of the 
curves toward the left reflects the softening character of the hysteresis backbone curve. 
These observed nonlinear phenomena need to be further investigated in a systematic 
nonlinear analysis in the future. 
 
3. 3 Response of the Building Cluster to Christchurch’s 6.3 Earthquake Signal 

Christchurch’s 6.3 magnitude earthquake happened on the 22nd of February 
2011 and had devastating impacts on residents, the city and wider area, and local and 
national economy [14]. While the earthquake with magnitude 6.3 on the Richter scale is 
not listed amongst the “top 10” in the world, the vertical peak ground acceleration 
measured 2.2 g is ranked second place after Japan’s earthquake and tsunami one 
month later in 2011 (with vertical peak acceleration of 2.7 g) [15]. The horizontal 
displacement signal of the Christchurch 6.3 event is depicted in Figure 8. The 
displacement spectrum shows three distinct peaks below 1 Hz.  
  

 
Figure 7: Comparison of response spectra of the nonlinear model 
for a large and small input amplitude on soft soil. Depicted is the 
base of building 3. 
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Figures 9 and 10 depict the responses of the building cluster for stiff and soft soil 
parameters. Figure 9 presents the response spectra of the base of the first building in 
the cluster. 

 
 
 
 
 
 
 
 
 
 
 

 
The frequency responses do not show a significant shift in frequencies from one soil 
condition to another, but differ in magnitude. According to Figs. 5 and 6, low frequent 
input signals are significantly more transmitted through the soft soil conditions than 
through the stiffer counterpart, which in the real scenario would be the unwanted case. 
Figure 10 shows the time responses of each building in the cluster on stiff and soft soil. 
It is immediately obvious that the buildings undergo larger displacements when placed 
on soft soil.  
  

a) b) 

Figure 8: Horizontal displacement signal of Christchurch 6.3 earthquake; a) time signal [16]; b) 
displacement spectrum. 

 
Figure 9: Comparison of response spectra of the nonlinear model 
for stiff and soft soil properties. Depicted is the base of building 1. 
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4. SUMMARY AND FUTURE WORK 

A first 1D analysis of a 2D building cluster has been undertaken to investigate in 
the collective dynamic behavior by looking at natural frequencies and corresponding 
mode shapes, resonance curves generated by harmonic input signals and real 
earthquake signals. The dynamic behavior has been analyzed for stiff and soft soil 
properties. The analysis of the dynamic cluster behavior on soft soil revealed coupled 
assembly modes for lower frequencies and uncoupled, individual building modes for 
higher frequencies. For the case of the cluster on stiff soil the coupled assembly modes 
occurred at higher frequencies while the decoupled, individual modes are present at 
lower frequencies. Significant frequency shifts have been observed when comparing 
the responses between stiff and soft soil, as well as between large and small input 
amplitudes. Furthermore, the transfer behavior on both soft and stiff soil reveals to be 
highly nonlinear, which requires a more systematic, nonlinear analysis in the future.  
  

a) 

 

c) 

b) d) 

Figure 10: Comparison of time responses to Christchurch 6.3 displacement input for stiff (a, b) and soft  
(c, d) soil. Shown are the results of the nonlinear solver. 
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APPENDIX 
The ߙ parameters of the stiffness matrix ߙ :ࡷଵ ൌ 	݇ଵ 	݇ଵ  ݇ଵଶ  ݇ଵ ߙଶ ൌ 	݇ଶ 	݇ଵଶ  ݇ଶଷ	  ݇ଶ	 ߙଷ ൌ 	݇ଷ 	݇ଶଷ  ݇ଷସ  ݇ଷ ߙସ ൌ 	݇ସ 	݇ସ  ݇ଷସ  ݇ସ 
 
Table A1: Choice of Parameters 
Symbol Parameter 

description 
Value Unit ݇ଵ, ݇ଶ, ݇ଷ, ݇ସ ground stiffness 5e6 N/m ݇ଵ	, ݇ସ boundary stiffness 5e6 N/m ݇ଵଶ the inter-building 

stiffness  
5e6 N/m ݇ଵ, ݇ଶ, ݇ଷ, ݇ସ shear wall stiffness 

parameters 
[0.0667,0.404,0.83,2.59] 
x 106 

N/m ݉ଵ,݉ଶ,݉ଷ,݉ସ Mass (all nodes) 10,000 kg 
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