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ABSTRACT 

 
The critical buckling characteristics of hydrostatically pressurized complete spherical 

shells filled with an elastic medium are demonstrated. A model based on small 
deflection thin shell theory, the equations of which are solved in conjunction with 
variational principles, is presented. Axisymmetric and inextensional assumptions are 
not used initially in the exact formulation and the elastic medium is modeled as a 
Winkler foundation. Simplified approximations based on a Rayleigh-Ritz approach are 
also introduced for the critical buckling pressure. The present exact formulation can be 
readily extended to apply to more general cases of non-axisymmetric buckling 
problems and the approximate method can be extended to the post-buckling range. 
 
1. INTRODUCTION 
 
The analytical study about the structural behavior of shallow and complete spherical 
shells is of great importance not only in the fields of civil, mechanical and aeronautical 
engineering but also in nanoscience and biomechanics. Notable examples include 
pressure vessels, spherical honeycombs, carbon onions, spherical viruses and so on. 
From the background described above, the buckling properties of hydrostatically 
pressurized complete spherical shells filled with an elastic medium is demonstrated 
currently. The paper concludes by outlining how the present study can be extended into 
the nonlinear range and for investigating of non-axisymmetric cases that include the 
properties of carbon onions. 
 
2. COMPLETE SPHERICAL SHELL MODEL 
 

The critical pitchfork bifurcation phenomenon of the hydrostatically pressurized 
complete spherical shell is investigated, as shown in Fig. 1. The spherical shell is 
constructed from a homogeneous and isotropic linear elastic material with Young’s 
modulus E  and Poisson’s ratio v , which is filled with an elastic material that is modeled 
as a Winkler foundation, i.e. with uncoupled springs in the radial direction and a 



constant foundation modulus fk . For a complete spherical shell with radius a  and 
thickness h , spherical angular coordinates in the latitude and meridian directionsθ  and 
φ are used. Displacement functions: u , v  and w  are in the θ , φ  and the radial 
directions, respectively. 
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Fig.1Hydrostatically pressurized spherical shell filled with an elastic medium 

 
3. FORMULATION 
 
3.1. EXACT APPROACH 

The following analysis is based on classical small deformation theory of thin shells. 
The total potential energyV  is expressed by the sum of the strain energy and work 
done by external load as Eq.(1). 
 

Ω+++= FBM UUUV  (1) 

 
In which MU is the membrane strain energy term, BU  is the bending component, FU  is 
the strain energy term due to a Winkler foundation and Ω  is the potential energy of the 
applied pressure.When uniform hydrostatic pressure p  is acting on the spherical shell, 
only the inward radial static displacement 0w  can occur in the pre-buckling state. 
Hence, the stress-strain relationship of the spherical shell is assumed to be linear up to 
the point of instability. In the fundamental pre-buckling state, the potential energies )0(V  
are given by Eq.(2). 
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For an equilibrium state, the first variation of the total potential energy V  must equal 
zero. This condition gives the following static displacement under uniform hydrostatic 
pressure: 
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The second variation of the total potential energy becomes 
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According to the Trefftz criterion, the buckling equations can be obtained by introducing 
F  in Eq.(4) into the Euler-Lagrange equations with the calculus of variations. The 
Euler-Lagrange equations in this case which is applied substitution of a solution are as 
follows: 
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Eq.(5) are the governing equations to be solved. Now, the solution of ψ  and w are 
assumed to be in the form: 
 

∑
∞

=

=
0

),(cos
m

mm PA φψ ,)(cos
0
∑
∞

=

=
m

mmPBw φ  (6)
 

 
where mA  and mB  are the constant deformation amplitudes, and the spherical 
harmonic )(cosφmP is a series of Legendre functions of degree m . 
Hence, homogeneous linear equations for mA  and mB  are obtained for all m  as 
follows: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
0
0

)22()21(

)12()11(

m

m

mm

mm

B
A

cc
cc

 (7)
 

In which 
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This is a standard eigenvalue problem for which nontrivial values are obtained when the 
coefficient matrix in Eq.(7) becomes singular. The corresponding pressure p  is thus 
calculated from the determinantal equations: 
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By solving Eq.(9), the pressure p  with the corresponding mode m  for several 
combinations of geometric and material constants can be obtained as an eigenvalue. 
For the particular values of the constants, the minimum value of the eigenvalues is the 
critical buckling pressure crp . It should be noted that the above equation is 
independent of the mode number m . This shows that only axisymmetric modes can 
occur in this problem despite the inclusion of the Winkler foundation term. 
 
3.2 SIMPLIFIED APPROACH 
   Next, we consider the simplified formulation using the Rayleigh-Ritz approach. Now, 
an inextensional and axisymmetric buckling deformation of the shell are assumed with 
shear and torsional strains being neglected for simplicity. Hence, u , φθε , and φθχ  are 
assumed to be zero. 
The stability criterion 
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gives the following critical pressure: 
 

⎩
⎨
⎧

+
+−+

+−

−+
=

ν
ν

1
)2)(1(2

)2()1(
)1(2

22

2 mmEh
mmaEh

akEh
p f

cr  

[ ]
⎭
⎬
⎫

++
+−++−

+ )1(1)1()2()1( 2
2

22

mmka
a

mmmmD
f

ν
 (11)

 



 
4. ANALYTICAL RESULTS AND DISCUSSION 
 

Fig.2 shows the variation of the nondimensionalized critical buckling pressure 
0/ ppcr , in which 0p  is the critical pressure for the empty complete spherical shell, 

which is given by 
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The solid lines are the exact values obtained from Eq.(9) and the dotted lines 
correspond to Eq.(11) from the Rayleigh-Ritz analysis. As can be easily seen in this 
figure, the value of 0/ ppcr  increases with increasing stiffness ratio Eak f /  and the 
exact and simplified crp  curve agree with each other. 
Fig.3 illustrates the buckling eigenmodes for the empty complete spherical shell of 

50/ =ha . The characteristic wavy-shaped axisymmetric buckling deformation with the 
mode number 18=m  can be found in this case. 
 
   

 
 
 
 
 
 
 
 

Fig.2 Comparison of crp  Fig.3 Buckling modes with 50/ =ha and 0/ =Eak f  

 
5. SUMMARY 
 

The characteristic buckling eigenmodes in hydrostatically pressurized complete 
spherical shells filled with an elastic medium have been demonstrated. A theoretical 
formulation based on small-displacement thin shell theory produced governing 
equations of equilibrium that has been solved using an exact methodology without any 
assumptions on axisymmetry or inextensibility. In addition, simplified formulations for 
estimating the critical pressure and the mode number have been proposed with a 
Rayleigh-Ritz approach. The expressions obtained from the Rayleigh-Ritz methodology 
have been shown to give sufficiently accurate results compared with the exact values. 
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