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ABSTRACT 
 
     In the paper, three-dimensional elastic problems of the rectangular thick plates 
resting on elastic foundations were analyzed by using the B-spline Ritz method.  The 
thick plates were subjected to a body force as the dead weight and a surface force as 
the fully distributed uniform load, and the elastic foundations were expressed by the 
Winkler model.  Comparing numerical results of the B-spline Ritz method with the ones 
of analytical and finite element method, the present method was confirmed to have 
stable convergence and high accuracy.  By analyzing some problems of the plate on 
foundation, the effects of thickness, modulus of subgrade reaction, transverse loading 
condition and boundary condition on the displacements and stresses of the plates 
resting on elastic foundations were clarified.   
 
 
 
1. INTRODUCTION 
 
     A lot of engineering problems can be modeled as a thick plate on soil-foundation 
such as footing of buildings, pavement of roads, reinforced-concrete pavements of 
highways, airport runways, foundation of storage tanks and base of heavy machines, 
etc.  Mechanical behaviors of a thick plate on elastic foundation are very important for 
low-cost and performance-based design. 
     The first-order shear deformation theory, namely Mindlin’s theory (Mindlin 1951) is 
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generally used to analyze a thick plate.  In this theory, the transversely shear strain is 
assumed to be constant in the thickness direction.  However, the transversely normal 
stress is neglected, and plays an important part to estimate mechanical strength of 
plate on foundation.  Therefore, the analysis must be based on the three-dimensional 
(3-D) theory of elasticity with considering all stress components.   
     Rectangular thick plates on elastic foundations have been reported using the 
analytical and numerical method based on the Mindlin’s theory.  Kobayashi (1989) 
analyzed the rectangular plates on the Winkler foundations with two opposite simply 
supported and other two edges being arbitrary boundary conditions using the Lévy-
type’s analytical solution.  Liew (1996) and Liu (2000) analyzed rectangular plates on 
the Winkler foundations with arbitrary boundary conditions using the differential 
quadrature method and differential quadrature element method, respectively.  However, 
static analysis of rectangular plates resting on elastic foundation based on the 3-D 
theory of elasticity has not been reported in the literature.   
     In the paper, 3-D elastic problems of the rectangular thick plates resting on elastic 
foundations were analyzed by using the B-spline Ritz method.  The B-spline Ritz 
method has been proposed by Nagino (2008).  This method is formulated by the Ritz 
procedure with triplicate series of normalized B-spline functions (Boor 1972) as 
displacement components.  The thick plates were subjected to a body force as the 
dead weight and a surface force as the fully distributed uniform load, and the elastic 
foundations were expressed by the Winkler model.  Comparing numerical results of the 
B-spline Ritz method with the ones of an analytical solution and the finite element 
method, the present method was confirmed to have stable convergence and high 
accuracy.  By analyzing some problems of the plate on foundation, the effects of 
thickness, modulus of subgrade reaction, transverse loading condition and boundary 
condition on the displacements and stresses of the square thick plates resting on 
elastic foundations were clarified.   
 
2. MATHEMATICAL FORMULATION 
 
2.1. Analytical model 
     Consider a rectangular plate with length a, width b and uniform thickness h, which is 
resting on an elastic foundation as shown in Figure 1.  The plate is defined with respect 
to a right-handed orthogonal coordinate system (x, y, z).  The displacement components 
at any point are defined by the in-plane components u, v and the transverse component 
w in the x, y and z direction, respectively.  The horizontal displacement components in 
the foundation are assumed to be negligible, and surface of foundation is smooth.  In 
this paper, the Winkler model is used.  This model is expressed as discrete elastic 
spring having the modulus of subgrade reaction k1. 
     Navier’s equations considering transverse body force Z for elastic rectangular palte 
are given by 
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Figure 1.  Coordinate system and geometry of rectangular plate on elastic foundation 
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in which 2∇  is Laplacian, ν  is Poisson’s ration, E is Young’s modulus and G is shear 
modulus.   
     In the 3-D theory of elasticity, strain and stress components are defined as 
 

x
u
x

ε ∂
=

∂
, y

v
y

ε ∂
=

∂
, z

w
z

ε ∂
=

∂
, xy

u v
y x

γ ∂ ∂
= +

∂ ∂
, yz

v w
z y

γ ∂ ∂
= +

∂ ∂
, zx

w u
x z

γ ∂ ∂
= +

∂ ∂
, (3) 
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in which λ  and µ  are Lamé’s constants, and e  is volumetric strain.   
     The boundary conditions at the four edges (x = 0, a and y = 0, b) of a rectangular 
plate would be satisfied as follows: 
 
Simply supported: 
 

v = w = 0,  σx = 0  at  (x = 0, a), 
u = w = 0,  σy = 0  at  (y = 0, b). (6) 

 
Clamped edge: 
 

u = v = w = 0  at  (x = 0, a), 
u = v = w = 0  at  (y = 0, b). (7) 

 
Free edge: 
 

σx = τxy = τxz = 0  at  (x = 0, a), 
σy = τyx = τyz = 0  at  (y = 0, b). (8) 

 
     The boundary conditions for top and bottom surfaces of the plate can be expressed 
by 
 

z qσ = − , 0yz zxτ τ= =    at  ( )z h= , 

1z k wσ = , 0yz zxτ τ= =   at  ( 0)z = . (9) 
 
2.2. Formulation of governing equation based on the B-spline Ritz method 
     The strain energy U  of a rectangular plate on elastic foundation can be expressed 
in integral form as 
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     The potential of external force V  can be written as 
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     Here, for simplicity and convenience in mathematical formulation, the following non-
dimensional coordinate system (ξ, η, ζ ) are introduced as 
 

x
a

ξ = , y
b

η = , z
h

ζ = . (12) 



  

     The displacement components can be expressed by non-dimensional displacement 
function U, V and W in ξ, η and ζ directions, respectively, as 
 

( , , ) ( , , )u x y z aU ξ η ζ= , ( , , ) ( , , )v x y z aV ξ η ζ= , ( , , ) ( , , )w x y z aW ξ η ζ= . (13) 
 
     The assumed spatial displacement field is based on a separable assumption for 
displacement functions.  The functions are expressed as the summation of a triplicate 
series of B-spline functions as follows: 
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in which )(, ξ

ξkmN , )(, η
ηknN  and )(, ζ

ζkrN  are one-dimensional (1-D) normalized B-

spline functions with the degree of spline function ( 1−ξk ), ( 1−ηk ) and ( 1−ζk ).  mnrA , 

mnrB  and mnrC  are unknown spline coefficients.  The appearing in Eq. (14) are defined 
as: 2−+= ξξξ

kmik , 2−+= ηηη
kmik  and 2−+= ζζζ

kmik , where ξm , ηm , ζm  and ξk , ηk , 

ζk are the number of knots and the order of spline function in the ξ, η, ζ directions, 
respectively.   
     Substituting Eqs. (12), (13) and (14) into Eqs. (10) and (11), the strain energy U  
and potential of external force V  can be written in a non-dimensional coordinate 
systems as 
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where qZ = Zh is load strength of a body force Z, q0 is load strength of a surface force q, 
Θ is non-dimensional foundation parameter, P[K ]  is the stiffness matrix of the plate, 
and F[K ]  is the stiffness matrix of the foundation. Here, q{f }  is force vector for a 
surface force q0, and Z{f } is force vector for body force Z.  { }∆  is unknown coefficient 
vector in the following: 
 

{ }T{ } { } { } { }A B Cδ δ δ∆ = , (18) 
 
in which the column vectors { }Aδ , { }Bδ and { }Cδ  as 
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     The total potential energy Π  of the rectangular plate on elastic foundation can be 
expressed as 
 

U VΠ = − . (20) 
 
     In Eq. (20), minimizing the total potential energy Π  with respect to the unknown 
spline coefficient vector { }∆  i.e.: 
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which lead to the following the governing equation in matrix form: 
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in which IJ[K ]  (I, J = U, V, W) is the sub-stiffness matrices of the plate and Wink

WW[K ]  is the 
sub-stiffness matrices of the Winkler type’s elastic foundation.  The size of matrix in Eq. 
(22) is 3( 2)( 2)( 2)m k m k m kξ ξ η η ζ ζ+ − + − + − . 
 
3. NUMERICAL RESULTS 
 
     The displacements and stresses of rectangular thick plates resting on elastic 
foundations with arbitrary boundary conditions were analyzed.  The plate is made of 
concrete, mechanical properties of the plate were as follows; Young’s modulus E = 23.1  



  

Table 1.  Convergence and comparison of displacements wE / qZa and stresses σx / qZ 
for SS-SS square thick plates on elastic foundation under body force Z. 

h / a ( 1) ( 1) ( 1)k k kξ η ζ− × − × −  m m mξ η ζ× ×  
Z

wE
q a

  
Z Z

yx

q q
σσ

=  

   ( 0ζ = ) ( 1ζ = )  ( 0ζ = ) ( 1ζ = ) 
0.2 3 3 3× ×  11 11 3× ×  – 6.497  – 6.504   6.440  – 6.449  
  21 21 5× ×  – 6.497  – 6.504   6.429  – 6.437  
 4 4 4× ×  11 11 3× ×  – 6.497  – 6.504   6.430  – 6.438  
  21 21 5× ×  – 6.497  – 6.504   6.430  – 6.438  
 Analytical solution – – 6.497  – 6.504   6.430  – 6.438  
 3-D FEM (C3D8) 51 51 11× ×  – 6.506  – 6.513   5.912  – 5.920  
  101 101 21× × – 6.500  – 6.506   6.166  – 6.175  
 3-D FEM (C3D20) 21 21 5× ×  – 6.497  – 6.503   6.443  – 6.452  
  51 51 11× ×  – 6.490  – 6.434   6.432  – 6.441  
0.5 3 3 3× ×  13 13 7× ×  – 0.7517 – 0.7535  1.173  – 1.175  
  17 17 9× ×  – 0.7517 – 0.7535  1.173  – 1.175  
  21 21 11× × – 0.7517 – 0.7535  1.173  – 1.175  
  25 25 13× ×  – 0.7517 – 0.7535  1.173  – 1.175  
 4 4 4× ×  13 13 7× ×  – 0.7517 – 0.7535  1.173  – 1.175  
  17 17 9× ×  – 0.7517 – 0.7535  1.173  – 1.175  
  21 21 11× × – 0.7517 – 0.7535  1.173  – 1.175  
  25 25 13× ×  – 0.7517 – 0.7535  1.173  – 1.175  
 Analytical solution – – 0.7517 – 0.7535  1.173  – 1.175  
 3-D FEM (C3D8) 41 41 21× × – 0.7514 – 0.7532  1.109  – 1.111  
  69 69 35× ×  – 0.7516 – 0.7534  1.135  – 1.137  
 3-D FEM (C3D20) 29 29 15× ×  – 0.7517 – 0.7535  1.174  – 1.176  
  41 41 21× × – 0.7517 – 0.7535  1.173  – 1.176  
 
 
GPa and Poisson’s ration ν = 0.2.  The plates were subjected to a body force Z as the 
dead weight and a surface force q as the fully distributed uniform load.  For the 
definition of the boundary conditions of the plate, for example, the symbols SF-CS, 
identifies a plate with edges (ξ = 0, 1) and (η = 0, 1) having simply supported edge (S), 
free edge (F), clamped edge (C) and simply supported edge (S), respectively.  The 
placement of the knots was set to the Chebyshev-Gauss-Lobatto points, namely the 
shifted Chebyshev points (Nagino 2008) in the following analysis.  The convergence 
and accuracy of the present method were investigated.  Furthermore, the effects of 
thickness-to-length ratio h / a, non-dimensional foundation parameter Θ, transverse 
loading condition and boundary condition on the displacements and stresses of square 
thick plates ( / 1b a = ) on elastic foundations were also investigated. 
     All computations are performed in double precision on a personal computer, and all 
of the displacements and stresses are organized to four significant digits. 
 
 



  

Table 2.  Convergence of and comparison displacements wE / qZa and stresses σx / qZ 
for CC-CC square thick plates on elastic foundation under body force Z. 

h / a ( 1) ( 1) ( 1)k k kξ η ζ− × − × −  m m mξ η ζ× ×  
Z

wE
q a

  
Z Z

yx

q q
σσ

=  

   ( 0ζ = ) ( 1ζ = )  ( 0ζ = ) ( 1ζ = ) 
0.2 3 3 3× ×  11 11 3× ×  – 2.820  – 2.823   3.305  – 3.311  
  21 21 5× ×  – 2.825  – 2.827   3.292  – 3.298  
 4 4 4× ×  11 11 3× ×  – 2.825  – 2.828   3.293  – 3.299  
  21 21 5× ×  – 2.826  – 2.828   3.294  – 3.299  
 3-D FEM (C3D8) 51 51 11× ×  – 2.818  – 2.821   3.006  – 3.012  
  101 101 21× × – 2.823  – 2.826   3.148  – 3.153  
 3-D FEM (C3D20) 21 21 5× ×  – 2.816  – 2.819   3.309  – 3.314  
  51 51 11× ×  – 2.824  – 2.826   3.296  – 3.302  
0.5 3 3 3× ×  13 13 7× ×  – 0.5158 – 0.5170  0.6496  – 0.6514 
  17 17 9× ×  – 0.5158 – 0.5170  0.6490  – 0.6509 
  21 21 11× × – 0.5159 – 0.5170  0.6489  – 0.6508 
  25 25 13× ×  – 0.5159 – 0.5170  0.6489  – 0.6508 
 4 4 4× ×  13 13 7× ×  – 0.5159 – 0.5170  0.6485  – 0.6503 
  17 17 9× ×  – 0.5159 – 0.5170  0.6488  – 0.6506 
  21 21 11× × – 0.5159 – 0.5170  0.6489  – 0.6507 
  25 25 13× ×  – 0.5159 – 0.5171  0.6489  – 0.6507 
 3-D FEM (C3D8) 41 41 21× × – 0.5148 – 0.5160  0.6045  – 0.6062 
  69 69 35× ×  – 0.5154 – 0.5166  0.6226  – 0.6243 
 3-D FEM (C3D20) 29 29 15× ×  – 0.5155 – 0.5166  0.6504  – 0.6522 
  41 41 21× × – 0.5157 – 0.5168  0.6496  – 0.6514 
 
 
3.1. Convergence and comparison studies 
     Tables 1 and 2 show the effects of the degree of spline functions and the number of 
knots on the convergence of the displacements wE / qZa and stresses σx / qZ at ( 0)ζ =  
and ( 1)ζ =  for square thick plate resting on elastic foundation under transverse body 
force Z having SS-SS and CC-CC.  The thickness-to-length ratio h / a is set as 0.2 
(moderately thick plate) and 0.5 (thick plate).  The non-dimensional foundation 
parameter Θ is set to be 210− .  The results are compared with the analytical solutions 
and the 3-D finite element solutions by Abaqus 6.12.  Here, C3D8 and C3D20 mean 
first-order solid element and second-order solid element, respectively.   
     Tables 1 and 2 show that stable convergence can be obtained by increasing the 
number of knots.  It is found that displacements and stresses rapidly converge by using 
the degree of spline functions ( 1) ( 1) ( 1) 4 4 4k k kξ η ζ− × − × − = × × .  The results in Tables 1 
and 2 show excellent agreement in all cases. 
     Tables 3 and 4 show the effects of the number of knots on the convergence of the 
displacements wE / q0a and stresses σx / q0 at ( 0)ζ =  and ( 1)ζ =  for square thick plate 
resting on elastic foundation under surface force q as the fully distributed uniform load  



  

Table 3.  Convergence and comparison of displacements wE / q0a and stresses σx / q0 
for SS-SS square thick plates on elastic foundation under surface force. 

h / a Solution methods m m mξ η ζ× ×  
0

wE
q a

 
0 0

yx

q q
σσ

=  

   ( 0ζ = ) ( 1ζ = ) ( 0ζ = ) ( 1ζ = ) 
0.2 Present 11 11 3× ×  – 6.386  – 6.488  6.436  – 6.544  
  21 21 5× ×  – 6.386  – 6.488  6.436  – 6.544  
  31 31 7× ×  – 6.386  – 6.488  6.436  – 6.545  
 Analytical solution – – 6.386  – 6.488  6.436  – 6.545  
 3-D FEM (C3D8) 51 51 11× ×  – 6.395  – 6.498  5.911  – 6.020  
  101 101 21× × – 6.388  – 6.491  6.169  – 6.277  
 3-D FEM (C3D20) 21 21 5× ×  – 6.385  – 6.488  6.449  – 6.558  
  51 51 11× ×  – 6.386  – 6.488  6.438  – 6.547  
0.5 Present 13 13 7× ×  – 0.6398 – 0.8923 1.154  – 1.296  
  17 17 9× ×  – 0.6398 – 0.8923 1.154  – 1.296  
  21 21 11× × – 0.6398 – 0.8923 1.154  – 1.296  
 Analytical solution – – 0.6398 – 0.8923 1.154  – 1.296  
 3-D FEM (C3D8) 41 41 21× × – 0.6394 – 0.8919 1.087  – 1.229  
  69 69 35× ×  – 0.6397 – 0.8922 1.114  – 1.256  
 3-D FEM (C3D20) 29 29 15× ×  – 0.6398 – 0.8923 1.156  – 1.296  
  41 41 21× × – 0.6398 – 0.8923 1.155  – 1.296  

 
Table 4.  Convergence and comparison of displacements wE / q0a and stresses σx / q0 

for CC-CC square thick plates on elastic foundation under sueface force. 

h / a Solution methods m m mξ η ζ× ×  
0

wE
q a

  
0 0

yx

q q
σσ

=  

   ( 0ζ = ) ( 1ζ = )  ( 0ζ = ) ( 1ζ = ) 
0.2 Present 11 11 3× ×  – 2.792  – 2.885   3.297  – 3.537  
  21 21 5× ×  – 2.794  – 2.887   3.298  – 3.540  
  31 31 7× ×  – 2.795  – 2.888   3.299  – 3.541  
 3-D FEM (C3D8) 51 51 11× ×  – 2.786  – 2.879   2.999  – 3.240  
  101 101 21× × – 2.792  – 2.885   3.147  – 3.388  
 3-D FEM (C3D20) 21 21 5× ×  – 2.784  – 2.877   3.313  – 3.554  
  51 51 11× ×  – 2.792  – 2.886   3.301  – 3.543  
0.5 Present 13 13 7× ×  – 0.4373 – 0.6738  0.6356  – 0.8993 
  17 17 9× ×  – 0.4373 – 0.6737  0.6361  – 0.8997 
  21 21 11× × – 0.4374 – 0.6737  0.6362  – 0.8998 
  25 25 13× ×  – 0.4374 – 0.6738  0.6362  – 0.8998 
 3-D FEM (C3D8) 41 41 21× × – 0.4357 – 0.6723  0.5864  – 0.8480 
  69 69 35× ×  – 0.4367 – 0.6731  0.6066  – 0.8692 
 3-D FEM (C3D20) 29 29 15× ×  – 0.4366 – 0.6731  0.6378  – 0.9004 
  41 41 21× × – 0.4370 – 0.6734  0.6370  – 0.9000 
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Figure 2.  The effects of thickness-to-length ratio, non-dimensional foundation 

parameter and loading condition on the transverse displacements of CC-CC 
square thick plates on elastic foundations. 

 
 
q0 having SS-SS and CC-CC.  The numerical calculation is same condition as Tables 1 
and 2.  
     Tables 3 and 4 also show that stable convergence can be obtained, and high 
accurate results are also obtained in all cases. 
 
3.2. Results and discussions 
     Figure 2 shows the effects of thickness-to-length ratio h / a, non-dimensional 
foundation parameter Θ and loading condition on the transverse displacement wE / qΓ a 
(Γ = Z, 0) of CC-CC square thick plates on elastic foundations.  The non-dimensional 
foundation parameter Θ varies from 610−  to 610 .  Note that Θ = 0 means no foundation 
condition.  The thickness-to-length ratio h / a is set as 0.2 and 0.5.   
     For Θ > 102, the transverse displacement at bottom surface (ζ = 0) is zero, namely 
the elastic foundation is nearly rigid compared to the plate.  For range of Θ < 10– 2, the  
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Figure 3.  The effects of thickness-to-length ratio, non-dimensional foundation 

parameter and loading condition on the in-plane normal stress of square 
thick plates on elastic foundations. 

 
 
transverse displacement is constant, and this is the same results as the no foundation 
(Θ = 0).  In the case of moderately thick plate, the transverse displacement along the 
thickness direction for each Θ is about the same regardless position along the 
thickness direction.  On the other hand, in the case of thick plate, the transverse 
displacement is different depend on the position along the thickness direction.   
     The effects of thickness-to-length ratio h / a, non-dimensional foundation parameter 
Θ and loading condition on in-plane normal stress σx / qΓ (Γ = Z, 0) of CC-CC square 
thick plates on elastic foundations are shown in Figure 3.  The numerical calculation is 
same condition as the Figure 2.   
     With increasing Θ, the in-plane normal stress at top and bottom surfaces (ζ = 0 and 
ζ = 1) are decrease regardless of thickness-to-length ratio and transverse loading 
condition.  For range of Θ < 10– 2 and Θ > 102, the in-plane normal stress is constant.   
     Therefore, the elastic foundation of range of Θ > 102 is a rigid foundation, and range  
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Figure 4.  The effects of thickness-to-length ratio, non-dimensional foundation 

parameter and loading condition on distribution of the in-plane normal stress 
of square thick plates on elastic foundations. 

 
 
of Θ < 10– 2 is same as the results of plate without foundation.  In the results, the effect 
of the foundation can be neglected in the analysis for Θ < 10– 2. 
     Figure 4 shows the effects of thickness-to-length ratio, non-dimensional foundation 
parameter and loading condition on distribution of the in-plane normal stress σx / qΓ (Γ = 
Z, 0) in the thickness direction of square thick plates on elastic foundations.  The non-
dimensional foundation parameter Θ varies from 410−  to 410 .  Note that Θ = 0 means no 
foundation condition.  The thickness-to-length ratio h / a is set as 0.2 and 0.5. 
     With increasing Θ, the normal stresses are reduced regardless of thickness and 
transverse loading condition.  The distribution of normal stress in the thickness direction 
for moderately thick plate is linearly.  On the other hand, in the case of thick plate, 
distribution of normal stress is non-linearly, and the neutral surface of normal stress has 
been moved down.  This cause is considered to be the effects of the transverse shear 
deformation and the surface force acting locally.    
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Figure 5.  The effects of thickness-to-length ratio, boundary condition and loading 

condition on distribution of the in-plane normal stress of square thick plates 
on elastic foundations. 

 
 
     Figure 5 depict the effects of thickness-to-length ratio, boundary condition and 
loading condition on distribution of the in-plane normal stress σx / qΓ (Γ = Z, 0) in the 
thickness direction of square plates on elastic foundations.  The non-dimensional 
foundation parameter Θ is set as 210− .  The thickness-to-length ratio h / a is used to be 
0.2 and 0.5. 
     From Figure 5, the stress distributions in the thickness direction of moderately thick 
plates are linearly and anti-symmetric distributions with respect to middle surface (ζ = 
0.5) regardless of boundary condition and transverse loading condition.  However, the 
stress distributions in the thickness direction of thick plates are received to the effect of 
transverse loading condition.  The stress distribution of thick plates on elastic 
foundation under the body force is non-linearly and anti-symmetrical with respect to 
middle surface (ζ = 0.5).  On the other hand, the stress distribution of thick plates on 
elastic foundation subjected to the surface force is not anti-symmetrical with respect to  
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Figure 6.  The effects of thickness-to-length ratio, boundary condition and loading 

condition on distribution of the normalized in-plane normal stress of square 
thick plates on elastic foundations. 

 
 
middle surface (ζ = 0.5), and the neutral surface of normal stress for CC-FF plate and 
CC-CC plate has been moved down from the middle surface (ζ = 0.5).  Based on Figure 
5, the distribution of the normalized in-plane normal stress σx / qΓ (Γ = Z, 0) in the 
thickness direction of square plates on elastic foundations are shown in Figure 6.  It is 
seen that the normalized stress distributions of moderately thick plates are not received 
to the effects of transverse loading conditions and boundary conditions.  However, with 
increasing thickness, these effects are appeared to range from bottom surface (ζ = 0) to 
middle surface (ζ = 0.5).   
 
4. COCLUSIONS 
 
     The 3-D stress and energy analysis of rectangular thick plates resting on elastic 
foundations with arbitrary boundary conditions has been presented.  The thick plate is 



  

subjected to a body force and a surface force.  The analysis is based on the 3-D theory 
of elasticity, and the elastic foundation is described by the Winkler model.  The 
governing equation is formulated by the B–spline Ritz method.  To demonstrate the 
convergence and accuracy of the present method, several examples are solved, and 
the results were compared with the analytical solutions and the finite element solutions.  
Moreover, the effects of thickness-to-length ratio, non-dimensional foundation 
parameter, transverse loading condition and boundary condition on the displacements 
and stresses of square thick plates resting on elastic foundations were clarified.  As the 
results, the following important conclusions were obtained.   
(1) Rapid, stable convergence and high accuracy were obtained by the B-spline 

method. 
(2) The elastic foundation of range of Θ > 102 is a rigid foundation, range of 10– 2 ≤ Θ ≤ 

10 2 is an elastic foundation, and range of Θ < 10– 2 is same as the results of plate 
without foundation.  Therefore, range of Θ < 10– 2, the effect of the foundation can 
be neglected in the analysis. 

(3) By the effects of transverse shear deformation and the surface force acting locally, 
distributions of normal stress in the thickness direction for thick plate become non-
linearly, and the neutral surface of normal stress has been moved down. 

(4) The normalized stress distributions of moderately thick plates are not received to 
the effects of transverse loading conditions and boundary conditions.  However, 
with increasing thickness, these effects are appeared to range from bottom surface 
to middle surface. 
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