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ABSTRACT

Offshore wind tribunes are becoming increasingly popular in the quest for
renewable sources of energy. The planning, design, inspection, and maintenance of
offshore wind farms requires careful consideration of many variables, including local
climate and site conditions, economic incentives, proximity to energy loads,
environmental considerations, and legal issues. The various subjects involved in the
design of offshore structures include oceanography, foundation engineering,
structural engineering, and marine civil engineering.

The development of an offshore wind farm includes six phases: the incorporation
of verification of the design basis, the preliminary design, and the final design, as well
as manufacturing surveys, transport and installation, and the final in-service state.
Some of the parameters affecting the projects are types of foundation, in-situ testing,
laboratory testing, slope stability, earthquake stability, hydraulic stability, wind loading,
wave loading and ice loading. These parameters also include sub-parameters and
these sub-parameters are considered as input parameters that can be used in the
learning and training phases in the neural network models.

Based on the results of the training phase, a forecasting study is presented for
models. In order to reach the best results, various configurations and architectures
are trained. The success rate of the model is measured by r?, a statistical indicator
applied to all the analysis. The best configurations, architectures, and error graphs
are presented.

As a result, the objective of this paper is to define the parameters importance that
affects the project of offshore wind farms and to make a reliable method for deciding
the efficiency of offshore wind farm projects by using neural network method.

1. INTRODUCTION

As it is mentioned before, offshore wind farms are becoming increasingly popular
as sources of energy. Because of we have to pay attention on the planning, design,
inspection, and maintenance of offshore wind farms, the site conditions importance
increases. The artificial neural network algorithm will help us to get a preliminary idea
about the projects due to the effective parameters for the project.

" Ph.D. Graduate Student
2 Professor

3265



2. PARAMETERS

These site conditions cover virtually all environmental conditions on the site,
including but not limited to meteorological conditions, oceanographic conditions, soil
conditions, seismicity, biology, and various human activities. The site conditions
include data on the local geological, oceanographic, meteorological, human, and
environmental characteristics of a wind farm site.

According to these site conditions that we have to consider in analysis by using
neural network models, the first parameter is the wind climate. The normal wind
conditions generally concern recurrent structural loading conditions, while the
extreme wind conditions represent rare external design conditions. Normal wind
conditions are used as basis for determination of primarily fatigue loads, but also
extreme loads from extrapolation of normal operation loads. Extreme wind conditions
are wind conditions that can lead to extreme loads in the components of the wind
turbine and in the support structure and the foundation. The extreme wind conditions
are specified in terms of an air density in conjunction with prescribed wind events.
The extreme wind conditions include wind shear events, as well as peak wind speeds
due to storms, extreme turbulence, and rapid extreme changes in wind speed and
direction. (Randolph,2005)

The wave climate is another parameter and is represented by the significant wave
height HS and the spectral peak period TP. The significant wave height HS is defined
as four times the standard deviation of the sea elevation process. The significant
wave height is a measure of the intensity of the wave climate as well as of the
variability in the arbitrary wave heights. The peak period TP is related to the mean
zero-crossing period TZ of the sea elevation process. The wave height H of a wave
cycle is the difference between the highest crest and the deepest trough between two
successive zero-up crossings of the sea elevation process. The arbitrary wave height
H under stationary 3 or 6 hour conditions in the short term follows a probability
distribution which is a function of the significant wave height HS. The parameter of
current consists of a wind-generated current and a tidal current, and a density current
when relevant. The current is represented by the wind-generated current velocity
Vuwing at the still water level and the tidal current velocity vyq4e at the still water level.
Other current components than wind-generated currents, tidal currents and density
currents may exist. Examples of such current components are; the subsurface
currents generated by storm surge and atmospheric pressure variations and the
near-shore, wave-induced surf currents running parallel to coast. (Randolph,2005)

Another important parameter is the water level and it consists of a mean water level
in conjunction with tidal water and a wind- and pressure induced storm surge. The
tidal range is defined as the range between the highest astronomical tide (HAT) and
the lowest astronomical tide (LAT), see Fig. 1. When the wind turbine structure is to
be located in an area where ice may develop or where ice may drift, ice conditions
shall be properly considered. Relevant statistical data for the following sea ice
conditions and properties shall be considered as the geometry and nature of ice,
concentration and distribution of ice, type of ice (ice floes, ice ridges, rafted ice etc.),
mechanical properties of ice (compressive strength ry, bending strength r), velocity
and direction of drifting ice, thickness of ice and probability of encountering icebergs.
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Fig. 1 Water level at offshore wind tribune farms (Randolph,2005)

Maybe the most important parameter that we have to focus on is the soil
investigations and it shall provide all necessary soil data for a detailed design. The
soil investigations may be divided into geological studies, geophysical surveys and
geotechnical soil investigations. (Randolph,2005) A geological study, based on the
geological history, can form a basis for selection of methods and extent of the
geotechnical soil investigations. A geophysical survey, based on shallow seismic, can
be combined with the results from a geotechnical soil investigation to establish
information about soil stratification and seabed topography for an extended area such
as the area covered by a wind farm. A geotechnical soil investigation consists of in-
situ testing of soil and of soil sampling for laboratory testing. The extent of soil
investigations and the choice of soil investigation methods shall take into account the
type, size and importance of the wind turbine structure, the complexity of soil and
seabed conditions and the actual type of soil deposits. For multiple foundations such
as in a wind farm, the soil stratigraphy and range of soil strength properties shall be
assessed within each group of foundations or per foundation location, as relevant.

Soil investigations are normally to comprise the following types of investigation the
site geological survey, the topography survey of the seabed, the geophysical
investigations for correlation with soil borings and in-situ testing, the soil sampling
with subsequent static and cyclic laboratory testing, the shear wave velocity
measurements for assessment of maximum shear modulus and the in-situ testing, for
example by cone penetration tests (CPT), pressiometer tests and dilatometer tests.
The geotechnical investigation at the actual site comprising a combination of
sampling with subsequent laboratory testing and in-situ testing shall provide the data
for soil classification and description, the shear strength and deformation properties,
as required for the type of analysis to be carried out and the in-situ stress conditions
for all important layers.

For the importance of characteristic soil properties the data should include, (Norsok
2004, OSIC 2004): Summary of soil conditions: soil classification, description, and
stratigraphy: total unit weight, solids unit weight, water content, void ratio, porosity,
relative densities, liquid and plastic limits, and grain size distributions; Basic soil
parameters: effective in situ overburden stress, o'\,; in situ pore pressure, ug;
preconsolidation stress, o’p; over consolidation ratio, OCR; coefficient of lateral earth
pressure at rest, K,; relative density of sand layers, D,; Deformation properties:
undrained shear modulus, G; drained Young’s modulus, E; Poisson’s ratio, v;
constrained modulus, M; horizontal and vertical coefficients of consolidation, c, and
cy; coefficient of permeability, k; creep parameters; cyclic loading parameters for
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settlement calculations; small strain shear modulus, Gnax;, damping ratio, ¢; Shear
strength parameters: friction angles for granular material, index, undisturbed, and
remolded undrained shear strengths, s, and sensitivity for fine grained material; pore
pressure parameters; parameters to describe excess pore pressure development and
shear strength degradation due to cyclic loading; for drained clay analyses, cohesion
and friction angles are needed; Parameters for specific applications: contour
diagrams for cyclic effects; base contact stress parameters; skirt penetration
resistance parameters; for piled and gravity base structures, mud mat stability and
settlement parameters; for jack-up platforms, parameters for stability settlement and
punching failure; for geohazard analysis, slope stability shear strength parameters;
for earthquake analysis, dynamic soil parameters.

Another parameter that effects offshore wind turbine farm projects is the foundation,
its type, dimensions, etc. The four main classes of offshore foundations consist of
piled foundations, gravity base foundations, skirt and bucket foundations, and floating
structures with moored foundations. There are advantages and disadvantages fore
each foundation class and structural subclass primarily based on site conditions and
turbine size. The loading regime of the offshore wind turbine foundation is unique to
offshore structures in that the weight of the turbine structure is low compared to the
overturning moment and the horizontal load. When designing the foundation for an
offshore wind turbine, it is important to keep in mind that since wind turbine farms
contain numerous turbines, a single design for the entire farm is necessary to enable
mass production and ensure expedient installation, both of which are necessary for
the economic feasibility of a wind farm. The choice of the foundation type should be
based on site-specific information, including the adequate characterization of the soil
conditions, water depth, scour and erosion potential, turbine capacity, foundation cost,
and the environmental loading conditions. The design process must consider both
the strength and the deformation characterization of the surrounding soils. The
primary soil strength failures that can occur in an offshore environment include
bearing capacity failure, sliding failure, and pile pull-out and punch-through failure.
The primary deformation failures that can occur include large settlements or lateral
displacements. Ultimately, the foundation design will depend primarily on the cost of
installation due to the number of turbines and their properties. (Watson 2000).

The level of seismic activity of the area is another parameter and is where the wind
turbine structure is to be installed shall be assessed on the basis of previous record
of earthquake activity as expressed in terms of frequency of occurrence and
magnitude. If the area is determined to be seismically active and the wind turbine
structure will be affected by an earthquake, an evaluation shall be made of the
regional and local geology in order to determine the location and alignment of faults,
epicenter and focal distances, the source mechanism for energy release and the
source to site attenuation characteristics. Local soil conditions shall be taken into
account to the extent that they may affect the ground motion (Randolph,2005). The
potential for earthquake-induced sea waves, also known as tsunamis, shall be
assessed as part of the seismicity assessment.

The presence of pipelines and cables within the area of installation shall be mapped
and must be evaluated as a parameter in the analysis. Extreme values of high and
low temperatures are to be considered as a parameter and to be expressed in terms
of the most probable highest and lowest values, respectively, with their
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corresponding return periods. Both air and seawater temperatures are to be
considered when describing the temperature environment. The plant, animal and
bacteria life on the site causes marine growth on structural components in the water
and in the splash zone. Marine growth adds weight to a structural component and
influences the geometry and the surface texture of the component. The marine
growth may hence influence the hydrodynamic loads, the dynamic response, the
accessibility and the corrosion rate of the component. Air density is another
parameter and it shall be addressed since it affects the structural design through
wind loading. For the parameter of the ship traffic, the risk associated with possible
ship collisions shall be addressed as part of the basis for design of support structures
for offshore wind turbines. Finally, the salinity of the seawater shall be addressed as
a parameter of importance for the design of cathodic protection systems
(Randolph,2005).

3. METHOD AND ANALYSIS

This study is mainly based on numerical models by using artificial neural network
methods. The artificial neural network methods are systems and computational
devices that are constructed to make use of some organizational principles
resembling those of the human brain. Like human brain this algorithm has the ability
to learn; recall and generalize from the data which are used to train the system.
Neurons are also grouped into layers by their connection to the outside world. For
example, if a neuron receives data from outside of the network, it is considered to be
in the input layer. If a neuron contains the network's predictions or classifications, it is
in the output layer. Neurons in between the input and output layers are in the hidden
layer(s), see Fig. 2. There are different types of neural network architectures. These
architectures differences are their algorithm and function formulas.

Input Meurons Quiput Neurons

en ns

Fig. 2 Neural Networks Structure (Ural, D. and Tolon M.,2008)

The back-propagation learning algorithm is the most commonly used neural network
algorithm. The back-propagation neural network has been applied with great success
to model many phenomena in the field of geotechnical and geo-environmental
engineering. Each neuron in a layer receives and processes weighted inputs from
neurons in the previous layer and transmits its output to neurons in the following layer
through links.

The weighted summation of inputs to a neuron is converted to an output according to

a nonlinear transfer function. The common transfer function widely used in the
literature is the sigmoid function. At the end of the training phase, the neural network

3269



should correctly reproduce the target output values for the training data and provided
the errors are minimal. The associated trained weights of the neurons are then stored
in the neural network memory. In the next phase, the trained neural network is feed
by a separate set of data. In this testing phase, the neural network predictions using
the trained weights are compared with the target output values. The performance of
the overall ANN model can be assessed by several criteria. These criteria include the
coefficient of determination (R?), mean-squared error, mean absolute error, minimum
absolute error, and maximum absolute error. A well-trained model should result in an
R?value close to 1 and small values of the error terms.

The geotechnical considerations are similar between offshore wind turbine
foundations and offshore platforms foundation and according to this knowledge, the
D is the width of the foundation, h is the height, M term is a moment parameter, etc.
are taken into the input parameters and the foundation area (m?) is taken as the
output parameter from Norway projects for this example case study problem (Fig. 3).

Self-weight of
superstructure and = A
foundation system =k [1!hq—FE§§
+ (V) Icy L
H h
Wind & wave & current forces I =

acting on legs (. M) MTHD)
VMH foundation 4%%@5
loads

Fig. 3 Combined loading of foundation (Randolph,2005).

Foundation area (dimensions) can be examined by neural network approaches.
Because of this, the architectures of back propagation neural network, probabilistic
neural network and general regression neural network are tried for neural network
approaches to evaluate our problem. Values are obtained from case study data.
These values will be used in neural network approaches.

The proposed models consist of separate datasets. These datasets have to be
divided randomly into testing, training, and validation datasets in the test set
extraction phase and these numbers must be appropriate for process (Fig. 4). For a
case study example, suitable numbers are given in Table 1. Neural Network
parameters that are considered for evaluating the foundation area are given below in
the Table 2.

Table 1 Distribution of the data among phases

Database Database (%)
Training 55
Testing 27
Forecast 18
Total 100
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gion - C:\Users\MT\DeslTop\Bookl.pat I _— Eg
- L

File Extract Help
Variable |Yariakle |Yariable EHhaCtiDn MBthOdS
z (") N percent [Test Set). M percent [Production Set), randomly chosen:
— (") Every Nth pattern [Test Set), Every Mth pattem [Production Set}:
% () All patterns after N thru M [Test Set), all after M [Production Set)
= (® Last M pattems [Production Set), N percent [Test Set), randomly chosen:
% (") By Row Marker
mm Training Set Test Set Froduction Set
Pattern file information

Label row: 1 13t Pattern row: 2 Last Pattern row: 12 Total Patterns: 11

Information Meeded for the Selected Extraction Method
Where N = Where M = Random Number Seed
|40 [2 0

N e _ — e
3| Test Set Extract — ﬁt_
E «tract all patterns
- i B =
. . . Files Extracted Printoy
¥ Number of rowsin training set (trn) =6
Number of rows in test set (.tst) =3
Number of rows in production file (.pro) = 2

Fig. 4 The test set extraction phase

Then, we have to define the output and input parameters in the program and we
define the values range. So, the program will use min, max, mean values while the
program is learning the model. These input and output values range table is given
below in Fig. 5.

@ Define Inputs/Outputs - C:\..\ICGE NEUROSHELL MODEL\Book1.pat —

File Edit Settings Help

Vanable Type Selection |lnput ﬂ
Variable Name | Water | Skitsd | v(=w') | HMN M MN M/HD | Foundatio
Variable Type || I I | | | A
Min: 54 0.3 57 10 30 0.2 16
Max- 310 36 5000 786 94144 127 16596
Mean 138,0909 8.7 13966  318.8 25578.89 0.4822222 3628.364

Std. Deviation |96.01089 11.02343 1546.276 307571 3301713 0.3210443 5122417

Fig. 5 The test set extraction phase
4. RESULTS
After making different model approaches, we get the results from models. From

these results as we can see from Fig. 6 our best success rate is % 93,90 and the
correlation coefficient is 0,9690.
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ENetwork Processing C:\Users\MT\Desktop\Book1.pat — =
— e ———

File  Run Help

[X ‘Compute R squared, etc. [actual outputs must be in the hle):

[X Include actuals in .0UT file (actual outputs must be in the file)

[X Include in .OUT file actuals minus network outputs

[ Write neuron activations to file for slab number: |2_

[ Set highest output to 1, others to 0 (use when outputs are categories]|

Input file name: C:\Users\MT\Desktop\Book1._pat

Patterns processed: [9

Dutput: C1

R squared: 0,9070

1 squared: 0.9390 N
Mean squared emor: 2575253.933

Mean absolute error: 1009.861

Min. absolute error: 0

Max. absolute error: 3343.494

Correlation coefficient r: 0.96350

Fig. 6 The test set extraction phase

As it is seen from Fig. 7 over-learning did not occur and graph is close to 0,00004
that means error is very little.

Error

oe0s

Epochs Elapsed

Fig. 7 The error — epochs elapsed graph for model

The model relative contribution factors graph will give the results for our case study in
Fig. 8 and Fig. 9.
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on (Strength) Factors - C\.\ICGE NEUROSHELL MODEL\BookL.n14 %
- - Y - i

File Help
030
0.25
Relative 020
Contri- 0.15
bution 010
Factor 1
List of outputs 0.05
T 0.00 f -+
123 4586
LH,ZFZBR Variable Number Max 0,272832 T
Min 0,1084783

Fig. 8 Model relative contribution factors graph

i r —
on (Strength) Factors - C:\..\ICGE NEUROSHELL MODEL\Book1.n14
- - . Y -

File Help
Input Strength  Label

. 0,27283 Water depth m

List of outputs 0,19615 H HMN

Foundation c 0,17804 U (= W') HN
8,12391 Skirts d (d/D)
0,12859 H HMN
8,10848 HM/HD

Fig. 9 Model relative contribution factors by input strength

5. LIMITATIONS AND FUTURE WORKS

During collecting the datasets, we have to collect or get all parameters also
different areas or projects, because we have to use them in the training and testing
phases. Due to this problem, we have to make a database for all offshore wind
tribune farm projects from all over the world which has been done previously, and
also have to get need more geotechnical, meteorological and oceanographic
datasets from municipalities or different companies for collecting data for the region
near the new project area. This situation makes a limitation for our models. Because
of this limitation we have use offshore platform foundation parameters.

For a future work, as mentioned above, we have to keep records from previous
projects and with these parameters we can evaluate different case studies like the
efficiency of offshore wind tribune project as economic case, as seismicity potential
or as wind / wave criteria and etc. For a future work of this study will be evaluating
the efficiency level of a specific offshore wind tribune farm as an economical way and
compare it with an existing one. By doing this study, we hope to see the expectations
and existing economic values will give the same results.
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CONCLUSIONS

The global development of offshore wind energy is heading towards larger turbines,
larger wind farms, and further distances offshore into deeper waters. The unique
loading aspects of offshore wind turbine foundations require further development.
Although the costs of offshore wind energy can be competitive with onshore wind
energy generation, refinement of the current foundation technology and offshore
construction procedures are necessary to decrease the relatively higher foundation
manufacture, transport, and installation costs.

In conclusion, with these limited parameters this study shows that, the water depth is
the most effective parameter for evaluation of foundation area at offshore wind
tribunes. Another important result is that this processes can be successfully
performed utilizing Al tools, and that different effective parameters of offshore wind
tribunes can be forecasted by these models. Another fact is that we get which
architecture (BPNN, PNN, and GRNN) is suitable and which Model has the best
success rate for geotechnical considerations of offshore wind turbines based on
neural network.

For future works, while deciding if the base area is suitable for offshore wind turbine
farms considering geotechnical conditions, or evaluating the sensitivity of effective
parameters for projects, using an Al tool model to see a short and easy pre decision
result, is recommended.
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