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ABSTRACT 
 

This study is aiming to optimize the performance of helical Savonius wind turbine 
at varying twist angles. The power coefficient at different tip speed ratio(TSR) and 
torque coefficient at different azimuths when helical angle of blade is 0°, 45°, 90° and 
135° were investigated in a condition that projection area and aspect ratio are 
consistently maintained. The flow characteristics were examined at every 1° from 0° to 
360°. In a result, the highest maximum power coefficient occurred at helical angle of 
45°. From the comparison of power coefficient with the varying azimuths, it is indicated 
that the difference between maximum and minimum power coefficient at 90° and 135° 
was less than that at 0° and 45°. Regarding the variation of torque coefficient at 
different shape models, as helical angle increases, the phase difference of torque 
coefficient became smaller. 
 
1 Introduction 
 

Due to excessive use of fossil energy, the world has faced serious problems such 
as energy depletion and environment pollution as its additional consequence. To 
overcome these problems, lots of alternatives to fossil fuels have been proposed. 
Among them, new renewable energy has drawn noticeable attention because of the 
significant amount of money invested into research and development fields by 
government and the diverse policies established by government in order to support to 
spread it to non-public field. According to the report published by Renewable Energy 
Policy Network for the 21st century (REN21) released in 2013, the amount of energy 
generated using new renewable energy has increased year by year. In 2012, the 
amount has grown by about 19% from the previous year. In particular, in case of wind 
energy, the additional capacity has much more increased rather than others among 
new renewable energies. The annual average growth rate of wind power capacity 
accumulated from 2007 and 2012 was reported to be about 25%. 

Vertical Axis Wind Turbine (VAWT) can be divided into two groups; Darrieus and 
Savonius type. Darrieus turbine is a device that uses lift force generated by airfoil, 
whereas Savonius turbine exploits drag force. Savonius wind turbine invented in 1929, 
in particular, has an inherently simple shape compared to other types of wind turbines, 
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so that the cost to develop the device can be less expensive. Furthermore, it produces 
less noise and maintains stable performance in relatively low wind speed. 

Recently, some researchers have been conducting researches on an 
optimization about VAWT based on an evolvement in the field of experiments and 
numerical analysis. Akwa (2012) studied numerically the influence of overlap ratio of 
Savonius wind rotor. The results showed that maximum performance appears at 
overlap ratio equals to 0.15. Kamoji (2008) examined the influence of the aspect ratio 
between diameter and height of Savonius wind rotor and the increase of the number of 
stages on the performance. They also analysed how the performance of Savonius wind 
rotor changes when helical angle is 90°. And performance of low aspect ratio (0.88) 
was better than aspect ratio 0.93, 1.17, respectively. Saha (2006) reported the 
performance of a wind turbine with the twist blades in the wind tunnel. The result 
showed that the large twist angle had better performance in lower speed, but in the 
large twist angle, the negative torque was observed.  

As seen these reviews, it is evident that many studies have been focusing on 
VAWTs. However, taking a close look at the design parameters worked on by those 
studies, one can recognize that there is lack of clear analysis as to how performance is 
affected as helical angle changes. Therefore, the main objective of this paper is to 
investigate the variation of power coefficient and the flow patterns of wind turbine at 
different helical angles based on a constant projection area which is an area of the 
wind rotor actually receiving the wind. 

 
2 NUMERICAL ANALYSIS 

2.1 Theoretical Background 
It is difficult to evaluate the performance of wind rotor with different shapes. 

Because of that, it is important to express the performance using non-dimensional 
performance coefficient which has generality. The coefficients used for evaluating the 
performance of wind rotor are as follows: C(Power coefficient), C(Torque coefficient) 
and TSR (tip speed ratio). TSR is a coefficient used for presenting the window rotor 
performance .TSR(Tip Speed Ratio) is defined as the ratio of the blade tip linear speed 
to the wind speed. TSR, denoted by , can be expressed as equation (1), where R 
denotes the rotor radius[m], n is revolution per minute(RPM) and Vஶ  means free 
stream wind speed[m/s]. 
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The power coefficient, denoted by CP, is a ratio of the power produced by the 

wind rotor to the power available at a specific wind speed. The power coefficient can be 
calculated by equation (2), where T is a torque[N ∙ m], ρ denotes the air density[kg mଷ⁄ ] 
and A is an area covered by the rotor[mଶ]. 
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3. Numerical Analysis 
In this paper, the numerical analysis was also conducted using Fluent® which is 

one of commercial CFD (computational Fluid Dynamics) programs. Fluent is an 
analysis program utilizing finite volume method (FVM) based on the Navier-Stokes and 
energy equation, which is suited for resolving ambient flow and heat transfer problems 
for complicated shapes. Numerical domain and meshes were generated using Ansys 
ICEM. The number of meshes was distributed ranging from 1,200,000 to 1,500,000. 
For achieving fast calculation, the number of calculation repetitions was set to 50. In 
addition, the data has been stored after the flow was stabilized, e.g., around 5 rotation 
of the blade rotor. In terms of a turbulence model, In order to translate the operations of 
pressure and velocity, SIMPLE algorithm was used. 

 
3.1 Governing Equation 
A turbulence model employed in this paper requires analyzing URANS (Unsteady 

Reynolds Average Navier-Stokes). In this case, governing equations under Newton 
fluid condition requires two equations: continuous equation as expressed in Eq.(4) and 
momentum equation as expressed in Eq.(5). Considering the quality of the complicated 
turbulence and the swirling flow behind the rotating blade, the k-ε RNG turbulence 
model has been chosen. 

Turbulence kinetic energy (k) for flow analysis is presented as equation (6). 
Turbulence kinetic energy dissipation rate (ߝ) is as equation (7). In these equations, C,
C1 and C2 are constants, which has the values of Cµ=0.0845, C1=1.42, and C2=1.68,
ఓܥ ൌ 0.0845, respectively. 
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3.2 Boundary Conditions 
For the appropriate analysis, the overall domain is divided into two sub-domain – 

surrounding fixed and inner rotating bladed domains. Total number of grid was 
100~150million and grid shape was shown in Fig. 4. Fig. 4(a) and (b) are the main grid 
shape of rotating rotor and surrounding outer domain. In order to link the inner and 
outer domain, the interface condition is used for describe the detail of separated wake 
flow interacting the rotating and surrounding region. In general, the interface condition 
can be used for repetitive periodic or non-conformal calculation. In addition, the sliding 
mesh model(SMM) was used for (pseudo-)rotating mesh simulating the rotating blades. 
The sliding mesh can be effectively used in the case the mesh does not deform. The 
inlet condition was set to be 8m/s. In addition, the outlet condition in the domain was 
defined as a pressure outlet condition. Wall condition is applied to the side-, and 
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