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ABSTRACT
Nonstationary extreme winds, including the typhoon (or hurricane), thunderstorm 

downburst and tornado, are responsible for many structural damages and attracting the 
ever-increasing attention from the meteorological and wind engineering communities 
(e.g., Fujita 1985; Holmes and Oliver 2000; Xu and Chen 2004). Modeling their 
fluctuation is very complex. Usually, they can be characterized by the evolutionary 
power spectra density (EPSD) functions (e.g., Priestley 1965). However, the empirical 
models based on EPSD are not available for these winds mainly due to difficulties in 
mathematical treatments.  

In this study, based on the estimated EPSD, transient features of nonstationary 
winds are examined and results show that the spectral variations in the nonstationary 
wind fluctuations including two downburst samples are relatively weak. Also, validity of 
the nonstationary wind spectrum models directly extended from the stationary wind 
spectra is evaluated. Furthermore, two analytical models are suggested to characterize 
the nonstationary wind fluctuations, including a fully nonstationary process model and a 
simplified uniformly modulated process model. They will be helpful in the Monte Carlo 
simulation and structural dynamic analysis.  

1. Introduction 
Scholars from the meteorological and wind engineering communities pay more 

attentions to the extreme winds, including the typhoon (or hurricane), thunderstorm 
downburst and tornado, due to the wind-induced destructive damage on the buildings 
and other structures (e.g., Fujita 1985; Holmes and Oliver 2000; Xu et al. 2014). These 
winds often display the nonstationary characteristics. The mean component is typically 
characterized by a time-varying deterministic function. On the other hand, modeling the 
fluctuation is more complex. The fluctuation speed of the typhoon (or hurricane) is 
regarded to be stationary (e.g., Xu and Chen 2004; Wang and Kareem 2005), while that 
of the thunderstorm downburst wind is characterized by the nonstationary process (e.g., 
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Huang and Chen 2009). Recently, Xu et al. (2014) have modeled the wind fluctuation 
around the typhoon eye as the nonstationary process. These nonstationary processes 
can be described by the evolutionary power spectra density (EPSD) functions (e.g., 
Priestley 1965). EPSD portrays the energy distribution over both of the temporal and 
spectral domains and hence has more physical meanings over other approaches, such 
as the time-varying time series model and wavelets-based spectra (e.g., Huang and 
Chen 2009). Especially, when it comes to stochastic structural dynamics, EPSD 
functions render possible the frequency domain analysis, which is more efficient and 
physically meaningful over the time domain counterpart. Therefore, EPSD plays an 
essential role in structural dynamics under nonstationary excitations, which is similar to 
the power spectral density (PSD) for stationary excitations. 

The nonstationary wind fluctuation shows non-ergodic characteristics. Hence, as 
limited samples, usually one sample, are available, the estimation of the EPSD is pretty 
tricky. Due to the existence of the uncertainty principle, the genuine spectra cannot be 
estimated for one sample and only averaged spectra both on time and frequency can be 
obtained. In addition, limited field measurement data are available, especially, for 
thunderstorm downburst and tornado (actually, no field measurements exist for the 
tornado although it may have the strongest nonstationarity) because of small temporal 
and spatial scales, and random occurrences. Furthermore, the understanding of 
physical mechanism of these extreme winds still needs the improvement. These 
obstacles lead to the significant challenges in modeling the nonstationary fluctuation,
especially via the empirical nonstationary spectrum, which is different from the 
well-developed boundary layer winds where many wind spectra have been widely used. 

Recently, the attempts have been made to characterize and model the nonstationary 
wind fluctuations. Chen and Letchford (2004) proposed the deterministic-stochastic 
hybrid model for thunderstorm downbursts where the nonstationary fluctuation is 
regarded as the uniformly modulated process. Chen (2005) developed the time-varying 
vector AR model for the nonstationary fluctuation using Kalman filter to estimate the 
model coefficients. Huang and Chen (2009) studied the transient characteristics of 
thunderstorm downbursts based on the estimated EPSD via wavelets. Huang et al. 
(2013) proved that treating the nonstationary downburst fluctuation as the uniformly 
modulated process was appropriate for the tall building response analysis. Wang et al. 
(2013) adopted wavelet  

To develop an empirical model for nonstationary wind fluctuation, Li (2012) directly 
extended the existing stationary wind spectra to nonstationary winds and also derived 
the corresponding modulation functions. However, the physical mechanism of 
nonstationary extreme winds, especially that of thunderstorm downburst, is different 
from that of the traditional stationary boundary layer winds. The validity of such the 
direct extension should be examined. Also developing physically meaningful spectrum 
models for the nonstationary winds is critical to the structural dynamic analysis under 
extreme winds. 

When it comes to the coherence function of nonstationary winds, it is even more 
difficult to be estimated based on one sample. Hence, mathematically, it is a very tough 
task to obtain an empirical model for the coherence function of nonstationary wind 
fluctuations. Currently, Davenport’s exponential coherence function is adopted in 
nonstationary winds for convenience (e.g., Chen and Letchford 2005; Chen 2008;



Huang et al. 2013). Clearly, the coherence is assumed to be time-independent in this 
application. Such treatment should be evaluated.  

This study is organized as follows. Firstly, the inference of time-varying mean and 
variance of nonstationary extreme winds, including two sets of thunderstorm downbursts 
from field measurements, will be discussed. Then EPSDs of these winds will be 
estimated and their transient features will be discussed. Also EPSDs will be used to 
evaluate the validity of the nonstationary wind spectrum models directly extended from 
current stationary wind spectra. Furthermore, two analytical models will be proposed to 
characterize the nonstationary wind fluctuations, including a fully nonstationary process 
model and a simplified uniformly modulated process model. Based on estimated EPSDs, 
the time dependence of the coherence function of nonstationary downbursts will be also 
discussed. Finally, the concluding remarks will be given. 

2. Full-scale nonstationary wind records 
Two sets of the full-scale observations of thunderstorm downburst winds measured 

near Reese Technology Center, Lubbock, Texas will be studied, where one is the 
outflow of a real-flank downdraft (RFD) and another one is derecho (Gast 2003). The 
RFD rotates around the backside of the mesocyclone and plays an integral part in 
tornadogenesis, while derechos are widespread convective windstorms and often 
produced by squall lines, linear storm systems with multiple discrete updrafts (Chen and 
Letchford 2005). The observations have a duration of 1800s and sampling frequency of 
1 Hz. The downburst wind time histories at height of 15 m for both of RFD and Derecho 
are shown in Figure 1, respectively. 
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(a) RFD                       (b) Derecho 
Figure 1 Time histories of thunderstorm downbursts (height 15m) 

3. Inference of time-varying mean and variance  
Nonstationary wind time history at height z can be modeled as the summation of the 

time-varying mean and fluctuating component, and given by  

( ) ( ) ( )tU t U t u t  (1) 

where ( )U t  is regarded as a deterministic function and ( )u t  is characterized to be a 

nonstationary evolutionary process. Evidently, the variation of ( )U t  can be assumed to 



be much slower compared to the lowest frequency embedded in ( )u t . Hence, the 

structural response introduced by the time-varying mean of wind speed can be 
performed by the quasi-static analysis. Usually, the mean is can be estimated by the 
smoothing or filtering operations, such as the moving average (MA), low-pass filter and 
polynomial curve fitting. Because moving average usually cannot track the rapidly 
varying mean, the wavelet transform (WT) and empirical mode decomposition (EMD) 
are widely used in the derivation of the time-varying mean (e.g., Chen and Letchford 
2005; Xu and Chen 2004; Huang et al. 2013; Wang et al. 2013). In this study, discrete 
WT will be used for the derivation. It has the capacity to decompose the univariate data 
as well as multivariate data. It should be noted that the estimated mean is generally 
biased. If the bias error in mean value estimation is reduced, the random error will be 
increased. Hence, there is a compromise between the bias and random errors (Bendat 
and Piersol 2010), which is similar the EPSD estimation based on one sample. 

Analogous to the inference of time-varying mean, the determination of 
instantaneous variance of the nonstationary wind fluctuation based on the single sample 
also involves challenges. Chen and Letchford (2005) adopted a two stage weighted 
moving-average method developed by Nau et al. (1982) to evaluate the variance. 
Huang and Chen (2009) inferred the variance by integrating the estimated EPSD.

In this study, a straightforward method based on kernel regression will be used to 
estimate the variance. The proposed model can be expressed as

( ) ( ) ( )t
tU t U t t   (2) 

where ( )t is standard error for the model at time t and also the standard deviation of 

wind fluctuation; t follows the standard Gaussian distribution. ( )U t can be estimated 

by WT or EMD, and ( )t can be estimated by using the kernel method (e.g., Nadaraya 

1964).
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3.1 time-varying mean 
Both of downburst records are used as the examples to illustrate the effectiveness 

of the proposed method. The estimated mean speeds using the discrete wavelet are 
displayed in Figure 2 (a) and (b). Here the wavelet is chosen as Daubechies wavelet 
(e.g., Daubechies 1992) of order 20 with the decomposition levels of 7 (also equivalent 
to window size of 128 s). Accordingly, the frequency range embedded in the mean is 
less than 0.0078Hz, which is smaller than the fundamental frequencies of the majority of 
structures devastated by the thunderstorm downbursts. For the comparison, the
time-varying mean via the moving average (window of 128 s) is also evaluated for RFD 
and shown in Figure 2 (a). It is observed that the corresponding mean is jagged, which 
indicates the moving average cannot track the fast-varying trend of wind speed very well.
The fluctuation speeds for both of thunderstorm downbursts via WT are shown in Figure 
2 (c) and (d).  
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(a) Mean of RFD                  (b) Mean of derecho 
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(c) Fluctuation of RFD              (d) Fluctuation of derecho 
Figure 2 Mean and fluctuation of thunderstorm downbursts (height 15m) 

3.2 Variance
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(a) Standard deviations            (b) Turbulence intensities 
Figure 3 Standard deviations and turbulence intensities of downbursts 



With the proposed kernel regression model, the time-varying variance can be 
obtained. Figure 3 shows the standard deviations and turbulence intensities for 
downbursts. The time-varying turbulence intensity is defined as 

(t)(t)
(t)

I
U


 (4) 

It can be seen that turbulence intensities for downbursts are around 0.12 expect few 
instants. Note the standard deviations estimated by kernel regression method are close 
to those based on the integration of EPSD as shown in Figure 3 (a). 

4. EPSD estimation 
Except the EPSD estimation method developed by Priestley and his associates 

(e.g., Priestley 1965; Priestley and Tong 1973), a series of new methods have been 
proposed for EPSD estimation of nonstationary process, such as short-time Thomson’s 
multiple-window approach (Conte and Peng 1997), wavelet transform-based approach 
(Spanos and Failla 2004; Huang and Chen 2009) and time-varying AR model (Chen 
2005). These new methods have some limitations for spectral estimation. Currently, the 
multiple-window scheme is only developed for the univariate process. Although the
wavelet approach performs well for multiple samples, it may introduce few negative 
spectral contents for single sample if the wavelet parameters are not carefully chosen.
On the other hand, it is hard to determine the order and the time-varying model 
coefficient for the time-varying AR model. Hence, Priestley’s classic EPSD estimation 
method is still widely used (e.g., Xu et. al 2014) due to its straightforwardness and wide 
applicability. In this study, this method will be used to evaluate the nonstationary spectra 
of extreme winds.  

4.1 Downburst winds 

The estimated and normalized EPSD (Normalization is based on instantaneous 
variance, which is estimated via the integration of EPSD) for RFD and derecho at height 
of 15 m (Only 0-0.25Hz shown) are displayed in Figures 4 and 5. Because the 
3-dimensional illustrations may not clearly depict the detailed contents of EPSD, the 
contours for normalized EPSDs are also displayed in Figure 6. Based on these figures, 
it can be seem that spectra obviously show the time-dependent characteristics. 

Figure 5 (a) shows that there exist significant energy evolutions around 500s and 
700s for EPSD of RFD, which corresponds to the large variation of wind fluctuations at 
these time instants. On EPSD of derecho, there is a peak around 1200s, which is also 
related to the large fluctuations around that time instant. In addition, it can be roughly 
observed that there exist three plateaus on EPSD of derecho, including 0s-600s, 



600s-1100s and 1100s-1800s, which are consistent with the three ranges of wind 
fluctuations with different amplitudes.  

Figures 5 and 6 show that the spectral evolution along the time axis is rather slight, 
especially for RFD where spectral content has little variation with the time. Similar to 
stationary wind spectrum, the trend of the spectrum at each time instant is decaying with 
the increase of the frequency. The dominant frequency can also be found from Figure 6,
which is located around 0.0125 Hz. This observation is validated by PSDs of downburst 
fluctuations, shown in Figure 7. 

 (a) RFD                       (b) Derecho 
Figure 4 EPSDs for Downbursts (height 15m) 

(a) RFD                           (b) Derecho 
Figure 5 Normalized EPSDs for Downbursts (height 15m) 

(a) Normalized EPSD for RFD    (b) Normalized EPSD for derecho 



Figure 6 Normalized EPSDs for thunderstorm downbursts (height 15m) 

0 0.05 0.1 0.15 0.2 0.25
0

100

200

300

400

500

600

Frequency (Hz)

P
S

D

 

 
RFD
Derecho

Figure 7 PSDs for thunderstorm downbursts (height 15m)  

5. Validity of a class of analytical models for nonstationary wind fluctuations 
Due to the lack of the empirical model for the nonstationary wind, the extension of 

available stationary wind spectra seems pretty natural. By dividing the duration of wind 
fluctuation into infinitely small intervals and regarding the PSD in each interval following 
existing stationary wind spectrum with varying mean wind speeds, Li (2012) claimed the 
nonstationary wind spectrum could be obtained by combining these time-varying PSDs.
Actually, the stationary wind spectrum is valid for the well-developed storms and it may 
not be meaningful for extremely small interval. Hence, the validity of such extension 
should be examined. 

Some widely used spectra, such as Kaimal’s, von Karman’s and Davenport’s
spectrum, may be directly adapted to nonstationary winds. Due to similarity among 
these spectra, Kaimal’s spectrum at height z will be scrutinized as the example in this 
section and this spectrum is expressed as  

2 5/3
*

( ) 200
(1 50 )

nS n f
u f




(5) 

where n  is frequency in Hz; ( )S n  is the wind spectrum at height of z  above the 

ground; *u  is friction velocity and defined as *
0ln( / )

kUu
z z

  in which k  0.4, U  is 

mean wind speed at height z and 0z  is roughness length; f  is reduced frequency 

and defined as nzf
U

 . By introducing the time-varying mean wind speed, the 

stationary Kaimal’s spectrum could be extended to describe the nonstationary wind 
fluctuation, which is given by 



2
* 5/3

200( , ) ( )
( ) [1 50 ( , )]
zS t n u t

U t f t n



(6) 

where *
0

( )( )
ln[ / ]
kU tu t

z z
 and ( , )

( )
nzf t n

U t
 .

However, the spectra of nonstationary strong winds may not follow famous 
Kolmogorov’s ‘ 5 / 3 ’ law. Hence, a more general model may be required. For stationary 
boundary layer winds, Olesen et al. (1984) proposed a general expression, which is 
given as 

2
*

( )
(1 )

nS n Af
u Bf



 



(7) 

where A , B ,  ,   and   are constants to be determined by the atmospheric 

conditions. The slope of this spectrum model is characterized by   for the 

low-frequency range and by    for high-frequency range. Similar to the possible 

nonstationary Kaimal’s spectrum, the general spectrum in Eq. 7 can also be adapted for 
nonstationary case, which is expressed as 

( , )( , )
[1 ( , ) ]

Af t nS t n
Bf t n



 



(8) 

where 2
* ( ) /u t n  has been included in numerator. All parameters in Eqs. (6) and (8) can 

be evaluated by nonlinear fitting. 
To evaluate the validity of the aforementioned two models in the estimation of 

EPSD, the wind fluctuation of RFD downburst is used as the example. Figure 8(a) 
shows the estimated nonstationary spectra based on Eq. (6), where roughness length 

0z  is taken as 0.2 m corresponding to flat terrain. It can be observed that the model in 

Eq. (6) cannot capture the dominant frequencies in the nonstationary winds, although 
the evolutionary characteristics of the wind fluctuation can be found. Furthermore, the 
amplitude of estimated EPSD shown in Figure 8(a) is also significantly deviated from 
that via Priestly’s method. Figure 8(b) shows the fitted EPSD based Eq. (8), where the 

parameters A  15.7886, B  102.4225,   1.3674,   2.0921 and   -0.1198.

Obviously, the model based on Eq. (8) performances poorly. Compared with Eq. (6) 
where the time-varying mean approximately works as the amplitude modulation function, 



Eq. (8) does not have the fast-varying amplitude modulation function. Also it cannot 
characterize the dominant frequencies and multiple peaks in the spectra.  

Similar observations can be found for the derecho downburst sample. Obviously, 
both models derived directly from stationary counterparts are not appropriate for the 
nonstationary winds due to the different physical mechanism. The analytical models with 
sound physical meaning should be developed, which will be discussed in following 
section. 

(a) Based on Eq. (6)   (b) Based on Eq. (8) 
Figure 8 Estimated EPSDs based on two nonstationary spectra models

6. Proposed analytical models for nonstationary wind fluctuations 
Based on the discussion in previous section, the direct extension of stationary wind 

spectrum models is not appropriate. Hence, the appropriate nonstationary wind 
spectrum models are desired for better representing the nonstationary winds and 
facilitating the subsequent structural dynamic analysis excited by nonstationary winds. 
In following representation, two models will be proposed to model nonstationary winds. 

6.1. Fully nonstationary model 
Analogous to the nonstationary wind fluctuation, the ground motion often exhibit 

strong nonstationarity (e.g., Lin and Yong 1987). To describe the nonstationary ground 
motion, Conte and Peng (1997) proposed a fully nonstationary analytical model. The 
essence of this approach is to use the generally nonstationary analytical model to match 
the estimated spectra. Due to its versatility, this model will be adapted to represent the 
nonstationary wind fluctuation. 

Nonstationary wind fluctuation ( )u t  can be expressed as the summation of 

zero-mean, independent, uniformly modulated Gaussian processes, i.e., 

1 1

( ) ( ) ( ) ( )
p p

k k k
k k

u t X t g t Y t
 

   (9) 



where p  is the total number of component processes; ( )kX t  is k th uniformly 

modulated component process; ( )kg t  is the time-modulated function and ( )kY t  is the 

zero-mean stationary Gaussian process. ( )kg t  is given by the modified gamma 

function 
( )

1( ) ( ) ( )
k

k k

t
k

k k k
k

tg t e H t


 
 






 
  (10) 

where k and k  are positive constants; k is ‘arrival time’ for k th component 

process; k  is the positive integer; and ( )H t  is Heaviside step function. ( )kY t  is 

represented by the one-sided PSD function 

( )
(1 )

k

k k k kY Y
k

nS n
B n



 



(11) 

Note that the natural frequency is used in the preceding equation because the reduced 
frequency is not meaningful for nonstationary winds. Accordingly, the EPSD of wind 

fluctuation ( )u t  is obtained as 

2

1

( , ) ( ) ( )
k k

p

uu k Y Y
k

S t n g t S n


 (12) 

and the mean square value is given by 

2 2

0
1

[ ( ) ] ( ) ( )
k k

p

k Y Y
k

E u t g t S n dn




  (13) 

In this model, the product of the power and exponential functions in Eq. (10) make 

the modulation function ( )kg t  increase firstly and then decrease after a particular time 

instant, which can create the amplitude nonstationarity. On the other hand, the spectral 
nonstationarity can be obtained by summing up a series of uniformly modulated items 
as shown in Eq. (9). Hence the proposed model is pretty general in modeling both of 
amplitude and frequency nonstationarities. Also, the nonstationary wind fluctuation can 
be regarded as the superposition of several uniformly modulated component processes, 
which are characterized by the arrival time, spectral content and amplitude intensity. 
These component processes can arrest the local time-frequency resolution, thus this 



model can be used to describe the complex and general nonstationarity embedded in 
the wind fluctuation. Each component process can be interpreted as a class of eddies 
with similar statistical characteristics. For instance, the thunderstorm downburst can be 
decomposed into different types of vortexes. This model has many applications, such as 
the nonstationary wind speed simulation and the nonstationary wind-induced structural 
dynamic analysis. 

Nonlinear least square method can be used to estimate the parameters in the 
model. However, when the number of components p is large, it’s not easy to optimize 
the least square function since the total number of parameters is relatively large and the 
objective function may not be convex. The iterative algorithm is employed in the study. 
The estimated parameters for both of downbursts RFD and derecho are summarized in 
Tables 1 and 2, respectively. It can be seen that the estimated parameters are in 

reasonable range although fitting is complicated. For example, ‘  ’ varies around 

-3~-2 for most items.  
Figure 9 shows the fitted EPSDs for both downbursts. Comparison with Figure 4 

shows that the proposed model fits the two sets of data very well. Figure 10 displays the 
spectra at the typical time instants for both downbursts, which further demonstrates the 
fitted results approach the estimated EPSD satisfactorily. EPSD of RFD peaks around 
time instant of 680s, while that of derecho has largest energy around time instant of 

1200s. In this illustration, 9p   is used for both cases. It can be expected that the 

better fitting resolution can be achieved if the more items are included in the model.  

Table 1 Estimated parameters for the fully nonstationary model (RFD)

p      B  

1 909.0824 11.982 31.353 -38.764 2.305 3.184 0.501 27.217 

2 41.00603 7.042 28.843 291.274 0.399 29.613 1.125 3.854 

3 0.000095 3.370 121.722 147.371 5.283 55.670 1.538 7.466 

4 0.011492 6.288 30.370 -92.449 1.667 4.011 0.295 14.721 

5 0.001032 7.340 33.236 417.071 0.836 12.804 0.277 15.942 

6 491.8764 13.085 1170.74 48.844 31.487 0.003 1.035 32.357 

7 67.49465 8.209 28.778 445.592 0.826 44.903 1.233 8.566 

8 0.009593 2.764 382.729 686.969 0.992 10.432 0.582 6.603 

9 0.003245 0.276 188.111 857.229 1.130 10.099 0.633 7.196 



Table 2 Estimated parameters for the fully nonstationary model (derecho)

 (a) RFD                          (b) Derecho 
Figure 9 Estimated EPSDs based on fully nonstationary model
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(a) RFD                          (b) Derecho 
Figure 10 Spectra at typical time instants 

6.2. Simplified model 
From the discussion in section 4, it is concluded that the frequency contents in 

normalized EPSDs of wind fluctuations of the downbursts evolve very slightly with the 

p      B  

1 0.00044 4.003 71.682 341.348 2.294 16.882 0.675 11.061

2 751.4678 8.182 29.104 980.385 -0.083 54.295 1.278 5.694

3 19.6117 9.449 43.027 1129.222 1.921 16.961 0.618 9.055

4 0.01494 9.208 24.331 1474.044 5.052 33.187 0.861 12.796

5 2155.5082 12.431 24.652 910.819 3.166 49.993 1.079 13.085

6 1419.2143 12.815 36.941 792.090 4.581 17.525 0.770 10.367

7 373.4885 12.823 7.063 1025.375 3.224 23.909 0.683 14.406

8 0.00136 2.990 441.487 -329.583 0.824 1.811 0.197 16.837

9 0.00044 4.003 71.682 341.348 2.294 16.882 0.675 11.061



time. Therefore, it is reasonable to assume the normalized wind fluctuation is the 
uniformly modulated process. Similar modeling has been discussed by (Chen and 
Letchford 2005; Huang et al. 2013). However, no analytical model has been discussed 
previously, which will be presented below. 

A simplified nonstationary wind spectrum model can be suggested as 

2( , ) ( ) (n)S n t t S( , ) ( ) (n)( , ) ( ) (n)S n t t S( , ) ( ) (n) ; ( )
(1 )

AnS n
Bn



 



( ) AnS n( )S n( )  (14) 

In this model, the wind spectrum of the normalized wind fluctuation can be fitted. Note 

that the integration of ( )S n( )S n( )S n( ) is unity. The normalized wind fluctuations for downbursts 

are shown in Figure 11. The estimated and fitted spectra of these normalized 
fluctuations are illustrated in Figure 12. It can be seen that the fitted spectra match the 
estimated ones well. Table 3 summarized the estimated parameters for the simplified 

models of the nonstationary wind fluctuations. It can be found that ‘  ’ is in the 

range of -1.33~-1.67 for these normalized fluctuations, a little larger than ‘ 5 / 3 ’. Also 

note that 0  for all normalized wind fluctuations.

0 200 400 600 800 1000 1200 1400 1600 1800
-4

-2

0

2

4

Time (s)

S
pe

ed
 (m

/s
)

0 200 400 600 800 1000 1200 1400 1600 1800
-4

-2

0

2

4

Time (s)

S
pe

ed
 (m

/s
)

(a) RFD                          (b) Derecho 
Figure 11 Normalized fluctuation (height 15m) 
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Figure 12 Comparison between PSDs for normalized downburst fluctuations



Table 3 Estimated parameters for the simplified model 

A B   

RFD 992.077 529.346 0.9210 1.6289 8.487e-12

Derecho 1991.314 394.498 0.7629 1.7403 1.427e-13

7. Concluding Remarks 
Based on the field measurements of downburst winds, the nonstationary wind 

characteristics and analytic models were studied. The major contributions were 
summarized as: 

(1), The kernel regression method was proposed to infer the time-varying variance 
of the nonstationary extreme wind. This method had the good performance.  

(2), Based on the estimated EPSD via Priestly’s method, the spectral variations in 
the nonstationary downbursts were found weak. This indicated that the uniformly 
modulated process could be used to model these winds. 

(3), The direct extension from the current stationary wind spectra was not suitable 
for nonstationary winds due to different physical mechanisms between boundary layer 
winds and nonstationary extreme winds. 

(4), Two analytical models including the fully nonstationary and simplified ones 
were proposed. The fully nonstationary model was expressed as the summation of a 
train of uniformly modulated processes, while simplified one was the uniformly 
modulated process. Both models had more physical meaning than the direct extension 
visions and facilitated the wind speed simulation and structural dynamic analysis. 
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