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ABSTRACT

Two types of mixture extreme distributions are adapted to fit the wind pressure 
coefficients over the roof surface of low-rise buildings. Parameters of the mixture 
distribution are estimated by using Maximum likelihood. Two taps over the roof surface 
of low-rise building are selected for the data analysis. Fittings of the tail part of the data 
are compared via several measurements. Data analysis for two taps shows that the 
parametric hybrid GPD distribution generally may not be better than the two 
components mixture distributions and EVD_lognormal mixture distribution may be a 
better choice to describe the wind pressure distribution over the roof surface of low-rise 
buildings in this study. 
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1 INTRODUCTION

In USA and other areas around the world, many low-rise buildings are damaged 
by extreme wind events and much of wind-induce damage on those low-rise buildings 
could be attributed to roof failures. Roof damage is related to various wind-related 
influential factors. One of those factors is wind pressure. Therefore, to better evaluate 
the wind-induce damages, it is important to model the maxima wind pressure 
coefficients. Literatures show that the distribution of pressure coefficients is 
non-Gaussian and various extreme value distributions and mixture distributions are 
proposed to model the wind pressure. 
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Extreme value theory is widely used to describe the likelihood of unusual behavior 
or rare events occurring, such as in financial study, insurance, hydrology or 
environmental applications, etc. A good reference book that discusses different 
applications with extreme value theory is by Reiss and Thomas (2001). However, a 
single distribution cannot fit the data well in many situations. Researchers developed 
mixture distributions to model the non-Gaussian data. There two types of mixtures: 1. 
The data comes from two independent distributions; 2. Bulk part of the data is from one 
distribution and the rest of the data comes from one or two extreme distributions. There 
are some related literatures on both types. Bordes L, et al (2006) studied the 
two-component normal mixture and corresponding estimation theory. Benaglia T, et al 
(2009c) created an R package which incorporates parametric and non-parametric 
mixture distributions modeling. Akdag et al. (2010) discussed the two-component 
mixture Weibull distribution to estimate wind speed characteristics. Kollu et al. (2012) 
studied three different mixture distributions for wind speed.  

For the second type, many researchers studied extreme value mixture models so 
that the mixture models can provide both the estimation of the threshold and parametric 
and/or non-parametric estimation of the bulk and tail part of the data. The extreme value 
mixture models typically have two components: 

1 a parametric/nonparametric model for describing all the non-extreme data below 
the threshold (that part of the data are referred to as bulk part);

2 a typical extreme value model for modeling data above the threshold (the data 
points over the threshold are referred to as the tail part).  

Carreau and Bengio (2008) proposed to use mixture model (referred to as Hybrid 
GPD) with any distribution for the bulk part and GPD for the tail part and the model just 
needs a continuity constraint at the threshold. MacDonald et al. (2011) and MacDonald 
et al. (2013) developed a non-parametric kernel density estimator based extreme value 
mixture models extending on that developed by Tancredi et al.(2006). Hu, Y. (2013) 
developed an R package that analyze data from a single population with 
parametric/nonparametric mixture distributions. 

In the study, we mainly compare the hybrid GPD to the mixture distributions for the 
tail part of the data. The process of the analysis is as follow. We use Normal hybrid-GPD 
to fit the pressure data to get threshold and the GPD of the tail part of the data. The fitted 
hybrid PGD serves as a benchmark. Next, various mixture distributions are used to fit 
the same data, including mixture of normal-GEV, normal-Gamma, GEV-lognormal, 
Normal-Weibull, EVD-Weibull, etc. After we fit the data with the above distributions, the 
fitted distributions are used to predict the probabilities and quantiles above the threshold 
which is estimated from the normal hybrid GPD method. Finally, five methods of 
goodness-of-fit are used to measure the closeness of the fitted distribution to the 
empirical one. Note that the measurements are applied for the tail part of the data. 
     This paper is organized as follows. In section 2, hybrid GPD and various mixture 
distributions are proposed to model wind pressure coefficient data and 5 measurements 



of goodness-of-fit are given to evaluate the proposed density functions. In section 3, 
several representative points are selected and fitted by the proposed distributions for 
the tail part of the data. Finally, we conclude our findings.  

2 MATERIALS AND METHODS

Classical theoretical results are concerned with the stochastic behavior of some 
maximum (minimum) of a sequence of random variables which are assumed to be 
independently and identically distributed. 

von Mises (1954) and Jenkinson (1955) proposed a way of unifying the three 
different types of extreme value distributions, which lead to the generalized extreme 
value distribution GEV(     ). The distribution function of GEV(     ) is given by: 
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The block maxima based the GEV distribution is inefficient as it is wasteful of data 
when the complete dataset (or at least all extreme values) are available. One way of 
overcoming these difficulties is to model all the data above some sufficiently high 
thresholds. Such a model is commonly referred as the peaks over threshold or threshold 
excess model. The advantage of the threshold excess model is that it can make use of 
the all the extreme" data. Under certain conditions, Coles (2001) show that the excess 
    over a suitable   can be approximated by the generalized Pareto distribution 
(GPD) G(x|     ): 
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Where             (
   

  
)   and    reminds us the dependence between 

scale parameter    and threshold u.

The density function of the hybrid Pareto model with single continuity constraint is 
therefore defined as:  
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The distribution function (CDF) of the hybrid Pareto model with single continuity 
constraint is defined as: 
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where  ( |   )  is the parametric or nonparametric distribution function and GPD 
distribution function is defined as  ( |      ). The   is the usual normalizing constant 
and      ( |   ), where the 1 comes from the integration of the unscaled GPD. 

Another possible method is to use the mixture distribution to model the wind 
pressure data. Here, we consider two-component mixture distribution: 

 ( | )     ( |  )  (   )  ( |  )                     (5) 
where   (     )

 ,   ( |  )       ( |  ) are two given probability density functions 
and      . Maximum likelihood method can be used to estimate the parameters for 
the mixture distributions.  

Goodness-of-fit tests 
Goodness-of-fit tests are used to measure the deviation between the predicted 

data using theoretical probability function and the observed data. In this paper, five 
statistical tests are considered as judgment criteria to evaluate the fitness of PDFs 
(Filliben (1975), Kollu et al. (2012)).

PPCC test:
The PPCC test was developed by Filliben (1975) and is known as a simple and 

powerful goodness-of-fit test. The test statistic is the correlation coefficient r between the 
ordered observations    and the corresponding fitted quantiles    determined by 
proposed probability distribution. If the assumption that the observations could have 
been drawn from the fitted distribution is true, then the value of r is close to 1.0. The 
correlation coefficient r is given by (Filliben, 1975) 
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Kolmogorov-Smirnov test: 
The Kolmogorov-Smirnov test (K-S) is defined as the maximum error in cumulative 

distribution functions (20).  
       |  ̂    | (7) 

where   ̂ and    are the fitted and Empirical cumulative distribution functions, 
respectively. Lesser K-S value indicates better fitness. 

   test: 
A larger value of    indicates a better fit of the estimated cumulative probabilities 

to the empirical cumulative probabilities.    is defined as: 
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Chi-square error:                   ∑
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Root Mean Squared Error: 
Root mean squared error (RMSE) provides a term-by-term comparison of the 

actual deviation between observed and predicted probabilities. A lower value of RMSE 
indicates a better distribution function model. 
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3 DATA ANALYSIS 

In this study, the pressure coefficient data is obtained from the website: 
http://fris2.nist.gov/winddata/uwo-data/uwo-data.html. Before the analysis, the original 
data are preprocessed. Details can be found in Ho et al. (2003). 

The prototype building is located on the suburban terrain with size of 125ft 80ft
32ft or 38.1m 24.4m 9.8m (Length Depth Height) and roof slope of 3:12. The data 
are collected from the wind tunnel study with 1:100 test model. The sampling frequency 
is 500 Hz and the wind speed at roof height is set at 110 mph or 49.2m/s. The locations 
of sensors on the roof can be found in Figure 1.  

Fig 1: distribution of taps on the roof 

The skewness and kurtosis of the wind pressure coefficient at each tap from 13 
AOAs (180 deg to 360 deg with the incremental of 15 deg) are plotted in Figure 2. From 
figure, the non-Gaussian property of pressure coefficient is clear for many taps. 
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Following the process mentioned previously, the wind pressures at two taps 
(skewness=3.578, 4 and Kurtosis= 41.95, 32.09) are fitted with hybrid GPD (bulk part is 
fitted with normal and tail part is fitted with GPD, see formula (4)) and various mixture 
distributions(see formula (5)). Note that the normal distribution was chosen since the 
pressure coefficient is not nonnegative. The two component mixture distributions we’ve 
chosen are: distribution of Normal and Gamma mixture, distribution of Normal and EVD 
mixture, distribution of EVD and lognormal mixture, distribution of EVD and Weibull 
mixture and distribution of Normal and Weibull mixture. For comparison purpose, we 
also fit the data with normal kernel density method. The fitted kernel density function 
and density of hybrid GPD are plotted in the following figures. In the analysis, the data 
are fitted with Hybrid GPD first to get threshold, then the quantils and   ̂s for each 
mixture are estimated for all the data points over the threshold and all the 
measurements of goodness-of-fit are applied to the tail part of the data(right side of the 
vertical lines in the histograms). The results of goodness-of-fit are summarized in the 
following tables. 

Fig 2: Histogram and fitted curves for Tap 1 

Skewness=3.58, Kurtosis= 41.95
PPCC K-S R2 Chi2 RMSE

Hybrid_GPD 0.965724 0.017194 0.971747 0.466526 0.007747
Normal_Gamma 0.99755 0.024987 0.977861 0.467671 0.0076
Normal_EVD 0.935869 0.024725 0.973789 0.547857 0.008253
EVD_lognorm 0.988356 0.024116 0.978971 0.422629 0.007247
EVD_Weibull 0.989687 0.030596 0.966731 0.770216 0.009717
Normal_Weibull 0.99658 0.025065 0.977833 0.469597 0.007615

Table 1: Tests of goodness-of-fit for each distribution on Tap 1 
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Fig 3: Histrogram and fitted curves for Tap 2 

Skewness= 4 and Kurtosis= 32.09
PPCC K-S R2 Chi2 RMSE

Hybrid_GPD 0.980687 0.007502 0.996213 0.207584 0.004117
Normal_Gamma 0.999642 0.014879 0.988241 0.775359 0.007606
Normal_EVD 0.817165 0.014017 0.987032 0.845275 0.008036
EVD_lognorm 0.982646 0.011328 0.996794 0.195879 0.003829
EVD_Weibull 0.997823 0.016941 0.990633 0.60967 0.006709
Normal_Weibull 0.999236 0.015041 0.987972 0.793639 0.007693

Table 2: Tests of goodness-of-fit for each distribution on Tap 2 

In the analysis, the proportions of the tail parts are over 20% for both taps. The 
estimated thresholds are omitted but plotted in Firgure 2 and 3. From the Table 1, last 
three of the 5 measurements vote for EVD_lognorm while Hybrid_GPD has the smallest 
K-S values and PPCC of normal_gamma mixture is the largest one. Thus, overall 
EVD_lognorm may be a better choice for Tap1. In Table 2, we observe the similar 
results. EVD_lognorm again is the best based on the last three measurements. Based 
on the analysis, EVD_lognorm should be better choice for both taps. Without PPCC, 
Hybrid GPD has close performance to EVD_lognorm.  

4 CONCLUSION 
In this study, we majorly fit the pressure coefficients over the low-rise buildings 

with normal hybrid_GPD and two-component mixture distributions. We expected that 
hybrid GPD might fit the tail part of the data better than the mixtures, but the analysis 
results did not support that. It turns out EVD_lognorm mixture distribution has better fit 
among all 6 models. From Figure 2 and 3, we found that the estimated thresholds by 
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hybrid GPD might be too small since the proportions of the tail parts for both taps are 
over 20%. Note that the extremes normally take small proportions of the data. This 
underestimated threshold might largely reduce the power of hybrid GPD method. On the 
other hand, we do observe that hybrid GPD has the smallest K-S values for both taps 
and hybrid GPD is only second to EVD_lognorm based on the last four measurements. 
Further study for hybrid GPD is guaranteed in the near future. 
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