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ABSTRACT 

This paper is concerned with the numerical calculation of stress intensity factors in 
2-D linear fracture problems by Petrov-Galerkin natural element (PG-NE) method, for 
which Voronoi polygon-based Laplace interpolation functions and CS-FE basis 
functions are taken for the trial and test fuctions respectively. Conventional finite 
element method using CS-FE basis functions is also used for the comparison purpose, 
and the stress intensity factors of edge cracks are calculated by the interaction integral 
methods. It is observed that PG-NE method calculates the stress intensity factors more 
accurately than conventional finite element method using CS-FE basis functions. 

1. INTRODUCTION 

By virtue of the high calculation accuracy, but relatively easy numerical 
implementation, as well as the path-independence, the J-integral method has been 
widely used to calculate the stress intensity factors. In case of calculation by finite 
element method, the contour integral is usually recasted into an equivalent domain 
integral form, the interaction integral (Yau et al., 1980). The numerical calculation of 
stress intensity factors were traditionally made by either finite element method or 
boundary element method. But, since the late 1990s, the extension of meshfree 
methods to this problem have been actively progressed, in particular for the calculation 
by the interaction integral using the weighting function, inspired by the fact that the 
interpolation functions used in meshfree methods provide the high smoothness. 

According to our brief literature survey, Belytschko et al. (1995) applied the element-
free Galerkin (EFG) method to compute the singular stress fields and the stress 
intensity factors in 2-D fracture problems involving fatigue crack growth and dynamic 
crack propagation. Fleming et al. (1997) enriched the EFG method by adding 
asymptotic fields to the trial function and augmenting the basis function by the 
asymptotic fields, in order to accurately calculate stress intensity factors with fewer 
degrees of freedom. Ching and Batra (2001) enriched the polynomial basis functions in 
the meshless local Petrov-Galerkin (MLPG) method with the crack tip singular fields to 
predict the singular stress fields near a crack tip and stress intensity factors. Rao and 
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Rahman (2000; 2001) applied the EFG method to calculate the stress intensity factor 
and to simulate the crack propagation in 2-D linear fracture problems under mode-I and 
mixed-mode loading conditions, and also they introduced a coupled meshless-finite 
element method to reduce the computational effort. Fan et al. (2004) enriched the 
partition-of-unity (POU) method by embedding an analytical solution exactly describing 
the crack-tip stress field into the FE shape function to calculate the stress intensity 
factors of 2-D cracks. 

As an extension of our previous work (2006a; 2006b; 2013), this paper intends to 
extend the natural element to the calculation of stress intensity factors of 2-D linear 
fracture problems. In order for the accurate and easy numerical integration using the 
Gauss quadrature rule, triangular constant-strain FE (CS-FE) basis functions are used 
for trial functions. The stress intensity factors of edge cracks under mode-I are 
calculated by the interaction integral method using Petrov-Galerkin natural element 
(PG-NE) method. In addition, the stress intensity factors are also calculated by the 
Bubanov-Galerkin natural element (BG-NE) method and standard finite element method. 

2. 2-D LINEAR ELASTIC BODIE WITH CRACK 

Referring to Fig. 1, let us consider a 2-D linear elastic body with a crack which 
occupies an open bounded domain 2  with the boundary cND   ,
where D  denotes the displacement boundary, N  the traction boundary, and 

  ccc   the crack surfaces. For two-dimensional planar configurations, the rate of 
released energy per unit crack extension in the x direction can be defined by the 
J integral formulation given by 
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where 2/W    is the strain energy density and ij  are Cauchy stresses evaluated 
along an arbitrary contour   enclosing the crack tip in a counter-clock wise sense. For 
a mixed-mode crack problem, J  is related to the stress intensity factors such that 

E/KKJ III
22  according to Irwin’s relation (1957). In which E  becomes E for plane 

stress state and  21 /E  for plane strain state, respectively. 

Fig. 1 A 2-D linear elastic body with an edge crack. 



In order to extract IK  and IIK , the interaction integral (Yau et al., 1980; Shih and 
Asaro, 1988) which considers two equilibrium states of a cracked body is employed. 
State 1 is the actual equilibrium state of a body subject to the prescribed boundary 
conditions while state 2 denotes an auxiliary equilibrium state which will be chosen as 
the asymptotic fields for modes I or II. The interaction integral denoted by  21,M  for the 
two equilibrium states is defined by 
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where  21,W  denotes the mutual strain energy defined by            2122121 /W ,   . 
Referring to Anderson (1991), the closed form near-tip displacement fields for modes I 
and II in two-dimensional linear fracture mechanics are available. And, the mode I 
stress intensity factor  1

IK  for state 1 can be determined by making state 2 as the pure 
mode I asymptotic field with   12 IK : 

   1I Mode 1 2
I

, K
E

M                                                      (3) 

In a similar manner, the stress intensity factor IIK  of mode II can be also determined. 
The line integral (2) is not best for numerical calculation because the integration of 

displacement gradients, strains and stresses of states 1 and 2 along path   is rather 
painstaking. Thus, it is desired to be transformed into an area integral form, for which 
Eq. (2) is firstly rewritten as 
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by substituting the path   with occC     as shown in Fig. 2 and multiplying 
a sufficiently smooth weighting function  xq . It is not hard to realize that Eqs. (2) and 
(3) are equivalent when  xq  becomes unity on   and vanishes on o , by assuming 
that the crack faces are traction free and straight in the darkened region A . 

Fig. 2 An extended closed path and the integral domain A . 



By taking the divergence theorem to Eq. (3) and letting the inner path   be shrunk to 
the crack tip, the transformed line integral (3) ends up with 
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3. PETROV-GALERKIN NATURAL ELEMENT APPROXIMATION 

The virtual work principle converts 2-D linear elasticity problem to the weak form: 
Find  xu  such that 

    dsˆdd:
N
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for every admissible displacement field  xv . In order for the Petrov-Galerkin natural 
element approximation using a given natural element grid NEM  composed of N  nodes, 
trial and test displacement fields  xu  and  xv  are expanded as 
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with Laplace interpolation functions  xJ  and CS-FE basis functions  xI . In addition, 
  and   are  N22  matrices containing N  basis functions J and I , and u and v
denote the  12 N  nodal vectors, respectively. 

Introducing Eq. (6) into Eq. (5) leads to 
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with the node-wise matrices defined by 
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with   xI
I
v supp  . Furthermore, D  is the  23  divergence-like operator defining 

Cauchy strain tensor and E  indicated the  33  material constant matrix of linear 
elasticity. It is noted that the numerical integration in natural element methods is carried 
out over the support of each test basis function. 

Differing from the Buvnov-Galerkin natural element method (BG-NEM) in which 
Laplace interpolation functions  xJ  are used for the test function as well as for the 
trial function, the Petrov-Galerkin natural element method (PG-NEM) in the current 
study uses the Delaunay triangle-based basis functions to expand the test 
displacement field. By employing this kind of PG-NEM, we intend to achieve both the 
accuracy and implementation easiness in the numerical integration using conventional 
Gauss quadrature (Cho and Lee, 2006c). The numerical integration in most meshfree 



methods is usually performed by applying the conventional Gauss quadrature rule to 
the background mesh which is additionally constructed. Contrary to the other meshfree 
methods, additional effort to construct a background mesh is not needed for PG-NEM 
because Delaunay triangles generated a priori in the process for defining the Laplace 
interpolation functions serve as a background mesh. 

                         
                                       (a)                                                            (b) 
Fig. 3 In the PG-NE method: (a) CS-FE basis function; (b) intersection region IJ

int

between trial function  xJ  and test function  xI .

4. COMPUTATION OF THE INTERACTION INTEGRAL 

The integral domain A  and the weighting function  xq  for the interaction integral (4) 
are constructed by specifying a domain defining circle of radius intr  as shown in Fig. 4.
The value of unity is assigned to all the nodes within the circle, while the value of zero 
is specified to the remaining nodes within a NEM grid. Then, a union of interior 
darkened eight Delaunay triangles generates a rectangular and its boundary serves as 
an interior path   shown in the previous Fig. 2. In addition, one can define another 
union of grayed Delaunay triangles in which only one or two nodes have the value of 
unity, and its boundary becomes the outer path o . Hence, the union of grayed 
Delaunay triangles automatically becomes the integral domain A , where the weighting 
function  xq  has the value between zero and unity. 

Fig. 4 The construction of the integral domain A  and the weighting function  xq .

Referring to Fig. 4, the gradient of weighting function vanishes outside the integral 
domain A . So, let us denote AM  be the total number of grayed Delaunay triangles in 



the integral domain A . Then, the interaction integral (4) is integrated triangle by triangle 
such that 

   



AM

K

,
K

, MM
1

2121                                                    (10) 

with  21,
KM  being the triangle-wise interaction integrals. Here, each triangle-wise 

interaction integral is computed by 
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using Gauss quadrature rule, in which x,INT  and w  indicate the total number of 
integration points, sampling points and weights, respectively. Note that the sampling 
points x  in K  and the Jacobian 

xJ  are calculated using the geometry 

transformation KT  defined by 
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between K  and the master triangle element ̂ . Here,  ii y,x  are the co-ordinates of
three grid points in each Delaunay triangle,   ,  the Gauss points in ̂ , and i  the 
basis functions. For the current study, two kinds of basis functions are used to 
interpolate the weighting function  xq , CS-FE basis and Laplace interpolation function. 

In two-dimensional fracture problems, the displacement and stress fields at the tip of 
a mixed mode crack which are used for state 2 are given by (Anderson, 1991) 
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Where, r  is the distance from the crack tip to the observation point x  and   is the 
angle from the tangent to the crack path. And, G  is the shear modulus   is the 
Kolosov constant defined by      13 /  for plane stress condition and   43 



for plane strain condition respectively, 

5. NUMERICAL EXPERIMENTS 

We consider a rectangular plate in plane-strain state with edge crack as shown in 
Fig. 5(a), where the width b  and the height h2  are in.01 and in.02  and uniform tensile 
distributed load psi.01  is applied to the top and bottom sides. The bottom left corner 
is simply supported and the bottom right corner is clamped, and Young’s modulus E
and Poisson’s ratio   are set by 31001 .  and 0.3 respectively. The plate domain is 
uniformly discretized as shown in Figs. 5(b) and 13 Gaussian points are used. For the 
purpose of comparison, the stress intensity factors are also calculated by finite element 
method using CS-FE triangular elements. The crack length is set variable and the 
radius intr  of domain defining circle is basically set by two times of the square of the 
area of a rectangular element composed of two Delaunay triangles (Moës et al., 1999). 

                                                       
                              (a)                                                                     (b) 

Fig. 5 (a) A rectangular plate with edge crack under uniform tension, (b) NEM grid. 

According to Tada et al. (1973), the reference stress intensity factors IK  of mode I 
are given by  b/afaK I   with a  being the crack length and  b/af  being an 
empirical function defined by
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for 60.b/a  . The stress intensity factors IK  calculated by three different methods 
using uniform 4121  grid points for seven different relative crack lengths b/a  are 
recorded in Table I and represented in Fig. 6(a). It is observed that PG-NE method 
provides the highest numerical accuracy and its prediction accuracy increases in 
proportional to the crack length such that the relative error with respect to the exact 
value is 2.70% at the relative crack length of 50.b/a  . Meanwhile, the difference in the 
prediction accuracy between PG-NE2 and CS-FE methods is negligible, but PG-NEM2 
provides slightly higher accuracy at larger crack length. 



Table I. Stress intensity factors IK  to the relative crack length ( 4121  grid points). 

Methods
Relative crack length  b/a

0.2 0.25 0.3 0.35 0.4 0.45 0.5
Exact 1.0865 1.3302 1.611 1.9465 2.3580 2.8766 3.5423

PG-NEM 0.7972
(-26.63%)

1.0394
(-21.86%)

1.3333
(-17.26%)

1.7027
(-12.53%)

2.1775
(-7.66%)

2.8009
(-2.63%)

3.6381
(+2.70%)

PG-
FEM2*

0.2267
(-79.13%)

0.3463
(-73.96%)

0.5662
(-64.87%)

0.7406
(-61.96%)

1.0524
(-55.37%)

1.4821
(-48.48%)

2.0828
(-41.20%)

CS-FEM 0.2428
(-77.65%)

0.3531
(-73.45%)

0.5608
(-65.20%)

0.7189
(-63.07%)

1.0065
(-57.32%)

1.4006
(-51.31%)

1.9474
(-45.02%)

(*) indicates the PG-NE method in which the weighting function is interpolated with CS-FE 
basis functions. 

Table II and Fig. 6(b) represent the numerical results obtained using uniform 8141
grid points, where one can realize that all three methods provide the stress intensity 
factors with larger relative errors. Since the radius intr  of domain defining circle is set by 
two times of the square of the area of a rectangular element composed of two 
Delaunay triangles, it becomes smaller by two times when compared with the numerical 
results obtained using 4121  grid points. And, it can be inferred that the smaller 
integration domain negatively influences the stress intensity calculation from the fact of 
common deterioration in the numerical prediction accuracy of all three methods.

Table III. Stress intensity factors IK  to the relative crack length ( 8141  grid points). 

Methods
Relative crack length  b/a

0.2 0.25 0.3 0.35 0.4 0.45 0.5
Exact 1.0865 1.3302 1.611 1.9465 2.3580 2.8766 3.5423

PG-NEM 0.7676
(-29.35%)

0.9821
(-26.17%)

1.2434
(-22.84%)

1.5691
(-19.39%)

1.9838
(-15.87%)

2.5229
(-12.30%)

3.2400
(-8.53%)

PG-FEM2 0.1661
(-84.71%)

0.2534
(-80.95%)

0.3744
(-76.77%)

0.5401
(-72.25%)

0.7669
(-67.48%)

1.0796
(-62.47%)

1.6769
(-52.66%)

CS-FEM 0.2534
(-83.17%)

0.2665
(-79.97%)

0.3827
(-76.25%)

0.5421
(-72.15%)

0.7600
(-67.77%)

1.0600
(-63.15%)

1.4787
(-58.26%)

                                   (a)                                                               (b) 
Fig. 6 SIFs IK  for three different methods: (a) 4121  grid points, (b) 8141  grid points. 



CONCLUSION 

An extension of Petrov-Galerkin natural element method (PG-NEM) to 2-D linear 
structural and fracture mechanics with high stress singularity has been addressed in 
this paper, in order to explore its characteristics in aspect of the numerical accuracy. 
The interaction integral method was formulated by PG-NEM to calculate the stress 
intensity factors of edge cracks, for which a 2L -projection stress recovery technique 
was employed to obtain more accurate smothered strain and stress fields. For the 
comparison purpose, the stress intensity factors were also calculated by CS-FE and 
PG-NE2 methods in which the weighting function is defined by CS-FE basis functions. 
Through the numerical experiment, it has been clearly justified that PG-NEM provides 
more accurate and stable numerical results than the other methods. 
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