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ABSTRACT 

Genetic Algorithms (GA) are commonly used for optimization of composite 
laminates. However, one of its main pitfalls is its failure to consistently converge to a 
global optimum solution.  The purpose of this work is to investigate different 
adaptations to the GA meta-heuristic search technique for use in optimization of fiber 
reinforced composite laminate stacking sequence. An adaptive selection technique is 
studied which incorporates the Laplace crossover operator, and uniform and power 
mutation operators. The optimization example focusses on buckling of a laminate plate. 

1. INTRODUCTION 

Composite materials due to their high specific stiffness are widely used in many 
applications in a variety of industries, and as a consequence it’s growth rate in the past 
50 years has greatly outpaced other structural materials such as steel and aluminum 
(Agarwal et al., 2006). The mechanical properties of fiber reinforced composite (FRC) 
laminates are affected by the orientation and relative position of its constituent laminae, 
also known as the stacking sequence. This stacking sequence has a strong effect on 
the bending stiffness of the laminate (Gürdal et al., 1999).

The problem of composite laminate stacking sequence optimization has been 
studied by a number of investigators. This optimization problem is particularly complex, 
as it consists of a very vast search space of discrete variables with many possible 
constraints. The characteristics of this optimization problem make it highly suitable for 
using genetic algorithms (GA), and many efforts have been made in using this
technique for the optimization of composite laminates (Xiao et al., 2013). One of the 
main drawbacks of the GA is its failure to consistently converge to a global optimum 
solution (Gürdal et al., 1999).
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2. BACKGROUND 

The genetic algorithm as an optimization method is inspired by the principles of the 
biological evolutionary process (Rao, 2009). This optimization method involves 
evaluating a group of possible solutions to a given problem referred to as “individuals”. 
Each of these sets of possible solutions is called a population. The GA consists of 
evaluating these possible solutions with an “objective function”, and passing on the 
information of the best individuals through so called inheritance operators. The concept 
behind this algorithm is similar to that of evolution, where individuals compete to 
achieve a defined goal. In it, new “generations” based on the best individuals will adapt 
until they reach an optimal design for a particular problem. In the case of stacking 
sequence optimization, these individuals each represent a different stacking sequence 
where its mechanical properties are of interest. The general GA process is depicted in 
Figure 1.

Figure 1 - Genetic Algorithm diagram. 

The aforementioned inheritance operators are used to generate new “individuals” 
until an optimal solution is found according to the given convergence criteria. These 
operators consist in basic terms of:  



Selection- from the current population and with information from the results of 
the objective function evaluation (fitness evaluation), individuals are chosen to 
be crossed-over and mutated.

Crossover- two individuals are combined to form a new individual with 
characteristics from its parent individuals. In this case, two different stacking 
sequences are mixed to create a new one. 

Mutation- a change of random nature is induced in one of the information bits of 
the individual. In this specific application, that would be the orientation of a 
lamina is randomly changed when an individual is set for mutation. 

3. ADAPTIVE GENETIC ALGORITHM (AGA) 

In an attempt to improve the performance and results of genetic algorithms used in 
composite laminate stacking sequence optimization, the probabilities of both crossover 
(Pc) and mutation (Pm) should self-adapt to the current state of the algorithm solution 
(Xiao et al., 2013). The adaptation affects the GA inheritance as shown in Figure 1. The 
self-adaptation should maintain a healthy level of diversity and keep the genetic 
information of higher performing individuals. Such an algorithm will be referred to as an 
Adaptive Genetic Algorithm (AGA), which can be achieved using the following 
expressions (Srinivas and Patnaik, 1994): 
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These calculated probabilities, depend on the current state of the simulations, and they 
determine the probability of each individual being used for crossover or mutation.  

In a preliminary study it was observed that using a Laplace crossover operator 
(Deep and Thakur, 2007a) resulted in more consistent global optimum solutions from 
the AGA. This particular method will be used for studying the composite laminate 
buckling problem, and it will be referred to as AGA-LX. The AGA-LX method was 
implemented using MATLAB (The MathWorks, Inc., 2014).
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4. BUCKLING 

As originally studied, this problem consists in maximizing the buckling load factor of 
a laminated composite (Haftka and Walsh, 1992). This problem has been the subject of 
a number of studies (Karakaya and Soykasap, 2009; Soremekun et al., 2001). For a
simply supported laminate plate, the buckling load factor is given by (Soremekun et al., 
2001): 

          [
                               

                
] (3)

where, the laminate has m and n half waves,     are the elements of the bending 
stiffness matrix, a is the dimension of the plate along the x direction, r is the plate 
aspect ratio, and    and   are the loads applied to the plate. Both M and N are 
assumed to have values of 1 or 2 (Erdal and Sonmez, 2005).  

4.1. AGA with Laplace crossover operator 
An array of different AGA-LX configurations was tested with the defined buckling 

factor optimization problem. This array consists of 12 different configurations of the 
AGA. Ten iterations of each of these configurations are executed to gather a set of data. 
Again, ten such sets of data are gathered and summarized in 2.

The AGA is tested using the Laplace crossover operator with a simple mutation 
operator, and an alternative configuration uses  said Laplace crossover with a power 
mutation operator (Deep and Thakur, 2007b). For the crossover operator, values of: -1, 
0, +1 are used for the location parameter a. For the power mutation operator, values of 
0.25, 0.50 and 1.00 are tested for the p index of the distribution. The various 
parameters for AGA configurations are shown in Table 1. 

Table 1 – Parameters for AGA configurations. 

Parameter Configuration #
1 2 3 4 5 6 7 8 9 10 11 12

Mutation U U U P P P P P P P P P
p - - - 0.25 0.25 0.25 0.50 0.50 0.50 1.00 1.00 1.00
a -1 0 1 -1 0 1 -1 0 1 -1 0 1

Tests where run for each of the 12 configurations to identify the parameters that 
show best results with the proposed method, 10 iterations were ran per each 
configuration. Figure 22 shows the results of the tests where the average number of 
misses and average number of optimum solutions found per 10 iterations of each 
configuration are plotted.  



Figure 2 - Summary of buckling problem data. 

We can see that configurations 2 and 3 stand out in both of the metrics of interest. 
Subsequently, AGA-LX configurations 2 and 3 (Laplace crossover operator with 
uniform mutation and a = 0 and 1, respectively) are selected to perform further 
comparison of these methods against those found in literature. 

4.2. Method 
The buckling problem was solved using the AGA-LX method for two different 

governing stacking sequence criteria. In the first criterion, the parameters used for the 
AGA matched those used by (Soremekun et al., 2001) and (Karakaya and Soykasap, 
2009), for ease of comparison. Lamina orientations are based on pairs of /0°2/, /±45°/ 
and /90°2/ plies. In the second criterion, the AGA was run with additional orientations in
an attempt to find higher values for the discussed buckling factor optimization. The 



proposed method was employed without using lamina pairs to impose the constraint of 
specially orthotropic laminates. In addition, orientations of ±30° and ±60° were included 
in the possible orientations. 

4.3. Results 
The two selected configurations (2 and 3) of the AGA are compared against those 

obtained by (Erdal and Sonmez, 2005; Karakaya and Soykasap, 2009; Soremekun et 
al., 2001). In accordance with the referenced literature, the value of the global optimum 
buckling load factor is found to be λcb = 3.973013726664593e+03. 

Using criterion 1, the proposed AGA results are less efficient than those in the 
literature (Soremekun et al., 2001) under the same criteria. However if we take into 
account the number of quasi-optimal solutions being found by the AGA, certain 
configurations (combination of parameters) become more efficient. These results are 
shown in Table 2, where P is the size of the population, R is number of runs with at 
least one global optimal divided by the total number of runs (“apparent reliability”) 
(Soremekun et al., 2001), ANo is the average number of optimal solutions found per 
iteration of the GA, and Co is the cost per optimum found. Columns marked with * take 
into account the quasi-optimal solutions.

One the most significant observation is that two quasi-optimal solutions are reported 
as optimal solutions in (Karakaya and Soykasap, 2009). While there may be practical 
applications for these solutions, it is important to distinguish between the quasi-optimal 
and optimal solutions. In addition, the proposed AGA finds 10 more such quasi-optimal 
solutions.  

Using criterion 2, after 40 iterations of the algorithm, two stacking sequences were 
found with higher buckling factors: [90/60/902/-45/903/-60/902/60/45/90/60/90/-
60/904/60/-60/45/-60/903/60/90/-45/-60]s and [902/60/90/-60/906/-45/602/90/-
60/30/90/60/-30/-60/60/-60/902/-602/60/90/45/-60/60]s, with corresponding λcb values of 
4.02511e+03 and 4.01125e+03, respectively. Both of these reported stacking 
sequences are balanced, so that A16 = A26 = 0. However, their values for bending-
twisting coupling D16 are 84.34502812213 and -42.21255385328, respectively. 

5. DISCUSSION 

Two additional global optimum solutions ([9010/±45/902/±457/902/±45]s and 
[904/±45/902/±45/9010/±45/904/±45/904]s) were reported in (Karakaya and Soykasap, 
2009). However, upon further inspection we observe that said stacking sequences are 
not precisely optimal stacking sequences. For these stacking sequences the buckling 
load factor is: λcb = 3.972996045360481e+03. The significance of quasi-optimal 
solutions in real life applications using evolutionary algorithms has been discussed 
(Ono et al., 2007), however its implications have not been fully discussed for the
purposes of composite laminate stacking sequence optimization. 



Table 2 - Results of (Soremekun 2001) compared to results of proposed AGA. 

# of optima found over 50 runs  

P R R* 1 2 3 4 5 6 q-opt. ANo ANo * Co Co* 

EL 15 0.78 38 1 0 0 0 0 0.8
 

     2,812.50  
 EL 45 1 46 4 0 0 0 0 1.08

 
      6,250.00  

 EL 75 1 43 6 1 0 0 0 1.16         9,698.28    

ME1 15 0.8 16 24 0 0 0 0 1.28
 

      1,757.81  
 ME1 45 1 0 6 15 29 0 0 3.46

 
      1,950.87  

 ME1 45 1 0 11 11 27 1 0 3.36
 

      2,008.93  
 ME1 75 1 0 2 4 40 4 0 3.92         2,869.90    

ME2 15 0.84 14 16 12 0 0 0 1.64
 

      1,371.95  
 ME2 45 1 2 6 14 28 0 0 3.36

 
      2,008.93  

 ME2 75 1 0 0 2 46 2 0 4         2,812.50    

VE 15 0.36 13 5 0 0 0 0 0.46
 

      4,891.30  
 VE 45 0.88 11 13 16 4 0 0 2.02

 
      3,341.58  

 VE 75 1 7 15 13 13 1 1 2.78         4,046.76    

LX2 15 0.20 0.38 4 2 2 0 2 0 9 0.2 7.44     11,250.00        302.42  

LX2 45 0.42 0.68 11 6 2 0 2 0 13 0.5 6.3     13,500.00     1,071.43  

LX2 75 0.80 0.96 12 10 9 0 9 0 8 0.98 6.16     11,479.59     1,826.30  

LX3 15 0.30 0.54 8 2 0 5 0 12 0.28 5.66       8,035.71        397.53  
LX3 45 0.68 0.78 23 2 2 0 6 0 6 0.58 5     11,637.93     1,350.00  

LX3 75 0.80 0.90 24 3 5 0 8 0 5 0.68 4.72     16,544.12     2,383.47  

It should be remarked that these quasi-optimal solutions come within 99.99955% of 
the fitness of the optimum solution, therefore becoming of interest for practical 
applications. Nonetheless, the nomenclature difference is important, as it is possible 
that comparison between methods be affected in performance indicators such as 
number of optimal solutions found per iteration.  

When the code was run without imposing laminate pairs, and with the addition of 
±30° and ±60° laminate orientations, the AGA found higher values for λcb. However it is 
very important to note that while there is no shear-extension coupling (A16, A26 = 0) in 
the found stacking sequences, as they’re balanced, there is some degree of bending-
twisting coupling. It is observed that the magnitude of the ratio of shear-extension 
D16/D11 is 0.01, therefore making this solution worth mentioning even though the 
assumptions that lead to Eq. (3) are no longer truly valid. Since no closed form solution 
is available for non-orthotropic laminates (Bettebghor and Bartoli, 2012), the 
contributions of the small D16 and D26 elements need to be further studied.  

6. CONCLUSIONS 

The proposed Adaptive Genetic Algorithm with Laplace crossover operator (AGA-LX) 
search algorithm is capable of finding optimal and quasi-optimal solutions with a 
computational expense comparable to that of previously proposed algorithms. The 



result given by the AGA-LX algorithm could be a quasi-optimal solution, which in case 
of application problems may very well be a valid solution. 

Two quasi-optimal solutions are reported as optimal solutions in (Karakaya and 
Soykasap, 2009). Despite the usability of these solutions, it is important to distinguish 
between the quasi-optimal and optimal solutions. In addition, the proposed AGA-LX
finds 10 more such quasi-optimal solutions. Further discussion is necessary in the 
desirability of such quasi-optimal solutions.  

Higher optimal values could be achieved with additional orientations and if laminates 
are not forced to be in pairs. However, the effects of small bending-twisting coupling 
terms in the bending stiffness matrix should be further studied in order to open the 
possibility of a much broader search space when optimizing this kind of stacking 
sequence problems. 

ACKNOWLEDGEMENTS 

D. Gutiérrez-Delgadillo gratefully acknowledges the financial support from the 
Mexican National Council of Science and Technology (CONACYT), scholarship No. 
311386. 

REFERENCES 

Agarwal, B.D., Broutman, L.J., Chandrashekhara, K., (2006). Analysis and 
Performance of Fiber Composites, John Wiley & Sons, NJ. 

Bettebghor, D., Bartoli, N., (2012)."Approximation of the critical buckling factor for 
composite panels". Struct. Multidiscip. Optim. 46, 561–584.  

Deep, K., Thakur, M., (2007a). "A new crossover operator for real coded genetic 
algorithms. Appl. Math". Comput. 188, 895–911.  

Deep, K., Thakur, M., (2007b). "A new mutation operator for real coded genetic 
algorithms". Appl. Math. Comput. 193, 211–230.  

Erdal, O., Sonmez, F.O., (2005). "Optimum design of composite laminates for 
maximum buckling load capacity using simulated annealing". Compos. Struct. 71, 
45–52.  

Gürdal, Z., Haftka, R.T., Hajela, P., (1999). "Design and Optimization of Laminated 
Composite Materials", 1 edition. ed. Wiley-Interscience. 

Haftka, R.T., Walsh, J.L., (1992). "Stacking-sequence optimization for buckling of 
laminated plates by integer programming". AIAA J. 30, 814–819.  

Karakaya, Ş., Soykasap, Ö., (2009). "Buckling optimization of laminated composite 
plates using genetic algorithm and generalized pattern search algorithm". Struct. 
Multidiscip. Optim. 39, 477–486.  

Rao, S.S., (2009), Modern Methods of Optimization, Engineering Optimization - Theory 
and Practice. John Wiley & Sons, NJ. 



Ono, S., Hirotani, Y., Nakayama, S., (2007). "Multiple solution search based on 
hybridization of real-coded evolutionary algorithm and quasi-newton method",
Proceedings of 2007 IEEE Congress on Evolutionary Computation, Singapore. 

Soremekun, G., Gürdal, Z., Haftka, R.T., Watson, L.T., (2001). "Composite laminate 
design optimization by genetic algorithm with generalized elitist selection".
Comput. Struct. 79, 131–143.  

Srinivas, M., Patnaik, L.M., (1994). "Adaptive probabilities of crossover and mutation in 
genetic algorithms". IEEE Trans. Syst. Man Cybern. 24, 656–667.  

The MathWorks, Inc., (2014). "Global Optimization Toolbox User Guide", Version 3.2.5. 
ed.

Xiao, X., Zimmerman, M. A., Saigal, A., Fragoudakis, R., (2013). "Optimization 
Techniques for Composite Laminates using Genetic Algorithms", Proceedings of
SAMPE 2013: Education & Green Sky – Materials Technology for  a Better 
World, Long Beach, CA 




