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ABSTRACT 

Three-dimensional asymptotic solutions are established for 
magneto-electro-elastic (MEE) singularities in MEE wedges. The solutions are obtained 
by combining an eigenfunction expansion approach with the power series solution 
method to solve three-dimensional equilibrium equations and Maxwell’s equations in 
terms of mechanical displacement components and electric and magnetic potentials. 
The MEE material is assumed to be transversely isotropic and its polarization direction 
is not necessarily parallel to the thickness direction of wedge. The correctness of the 
proposed solutions is confirmed by comparing with the published result foraspecial case. 
The developed solutions are further employed to examine the effects of the direction of 
polarization, the configuration of wedge and the material components on the orders of 
the singularities in wedges. 

 
1. INTRODUCTION 

Magneto-electro-elastic (MEE) materials canexchange mechanical, electric and 
magnetic forms of energy among each other and have been widely used in electronic 
devices, including acoustic actuators, magneto-electro-mechanical transducers, electric 
field tunable microwave resonators, highly sensitive magnetic or electric current sensors 
and other smart structures. It is interesting and important to investigate 
geometrically-induced magneto-electro-elastic singularities in wedges because such 
singularities normally initiate cracking and worsen the functioning of structures. 

Lots of studies on geometrically-induced stress singularities in elastic wedges 
have been carried out, and most of them were collected in the excellent review paper by 
Sinclair (2004). Williams (1952a, b) was at the forefront of investigating stress 
singularities at the vertex of an elastic wedge under extension or bending. Following his 
work, numerous studieshave been performed on elastic wedges, which arebased on 
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plane elasticity theory (Bogy and Wang 1971,Dempsey and Sinclair 1979,Ting and 
Chou1981,Lin and Sung 1998), classical plate theory (Rao 1971, Ojikutuet al. 1984, 
Huang and Chang 2007), first-order shear deformation plate theory (Burton and Sinclair 
1986, Huang 2003, McGee and Kim 2005), third-order plate theory (Huang 2002), and 
higher-order plate theory (Huang 2004), and three-dimensional elasticity theory 
(Hartranftand Sih 1969,Xie and Chaudhuri 1997). 

In the last two decades, the geometrically-induced singularities in piezoelectric 
wedgeshave caught the attention of researchers. Most of investigations make the plane 
strain assumption or the generalized plane deformation assumption. Using the plane 
strain assumption, Xu and Rajapakse(2000)extended Lekhnitskii’s complex potential 
functions for in-plane stresses and electric displacement components to examine the 
singularities at the vertex ofa piezoelectric wedge, while Shang and Kitamura (2005) 
utilized a modified version of the general solution of Wang and Zheng (1995). Hwu and 
Ikeda (2008) made the generalized plane strain assumption and proposed an extended 
Stroh formulation to investigatethe in-plane and out-of-plane electroelastic singularities 
in wedges. Chue and his co-workers (2002, 2003 and 2004) adopted the generalized 
plane deformation assumption and conducted a series of analytical studies of 
geometrically-inducedelectroelasticsingularities by using the extended Lekhnitskii 
formulation or the Mellin transform.By using various finite element approaches,Scherzer 
and Kuna (2004), Chen et al. (2006) and Chen and Ping (2007)examined in-plane 
singular electroelastic states at the vertex of a wedge. Based on three-dimensional 
piezoelasticity theory, Huang and Hu (2013)developed asymptotic solutions to 
comprehensively investigate the geometrically-inducedelectroelasticsingularities at the 
vertex of a wedge whose direction of polarization is arbitrary. 

There are only few studies conducted for geometrically-induced singularities in 
MEE wedges. These published works considered wedges subjected to anti-plane 
deformation and in-plane electric and magnetic fieldswith assuming that all of the 
physical quantities were independent of the coordinates along the thickness. To 
determine the singularities at the vertex of a bi-material MEE wedge,Liu and 
Chue(2006)employed the Mellin transform,andSue et al. (2007)used the complex 
potential function witheigenfunction expansion method. Liu (2009)further extended the 
solution of Liu and Chue(2006) to examine the singularities at the apex of an MEE 
wedge-junction structure, with considering the air effect. 

The main purpose of the work is based on three-dimensional 
magneto-electro-elasticity theory to develop an asymptotic solution to investigate 
geometrically-induced singularities in MEE wedges.Since the direction of polarization of 
an MEE wedge can be arbitrary in space, the in-plane components of displacement, 
electric and magnetic fields are generally coupled with the out-of-plane components, 
which much complicates the solution. An eigenfunction expansion approach with the 
power series solution technique and domain decomposition is adopted to establish the 
asymptotic solutionsby directly solvingthe three-dimensional equations of motion and 
Maxwell’s equations in terms of mechanical displacement components and electric and 
magnetic potentials.The correctness of the proposed solutions is confirmed by 
comparing the order of MEE singularities with the published result for a wedge under 
anti-plane deformation and in-plane electric and magnetic fields. The proposedsolutions 



are furtherapplied to study the effects of the direction of polarization, vertex angle, and 
boundary conditionson the singularities in MEEwedges. 
 
2. CONSTRUCTION OF ASYMPTOTIC SOLUTION 

 
Consider a rectilinearly anisotropicMEE wedge with vertex angle  ,shown in Fig. 1, 

where the - -x y z  coordinate system is used to describe the material anisotropy, and 
the - -x y z coordinate system is used to describe the geometry of the wedge.It is easy to 
solve for the MEE singularities at the vertex of the wedge in the cylindrical coordinate 
system (r, , z ) given in Fig. 1. The material properties defined in the - -x y z  coordinate 
system have to transform to the cylindrical coordinate system, and linear constitutive 
equations in the cylindrical coordinate systemcan be expressed as 

 

               
T Tc e E d H  (1a) 

             D e E g H  (1b) 

             B d g E H  (1c) 

where   ,   ,  D ,  B ,  E  and  H  are the stress, strain,electric 
displacement,magnetic flux, electric field and magnetic field vectors, respectively;  c , 
 e ,  d ,   ,    and  g  are the elastic stiffness constant, piezoelectric 
coefficient,piezomagnetic coefficient, dielectric constant, magnetic permeability and 
magnetoelectric coefficient matrices, respectively. 

 

 

 

 

 

 

 
Fig. 1 Coordinate systems for a wedge 
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Following the eigenfunction expansion approach, which Hartranft and Sih(1969) 
used for 3D elastic wedges, the mechanical displacements, electric potential and 
magnetic potential are expressed as 
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where iu   , ,i r z  is the displacement component in thei direction, and electric 
potential and magnetic potential are related to electric and magnetic fields, respectively, 
by 
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The characteristic values m  may be real or complex for MEE wedges. To ensure the 
finite displacements, electric field and magnetic field at  0r , the real part of m is 
required to be positive.Notably, when the real part of m  (Re[ m ]) is less than unity, the 
order of the singularities of stress, electric displacement and magnetic flux is Re[ m ]-1. 

Substituting Eqs. (2) into the equations of motion and Maxwell’s equations 
withoutthe body forces, free electric charges and magnetic charges andin terms of 
mechanical displacement components, electric potential and magnetic potential, 
carefully rearranging and considering the terms with the lowest order of ryields, 
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where ip , iq , ir , is  and it  (i= 1~14) are known functions of  . 
Equations (4) are a set of ordinary differential equations with variable coefficients 

that depend only on  , and the three displacement components, electric potentialand 
magnetic potential are generally coupled.The exact closed-form solutions toEqs. (4) are 
intractable, if they exist. The power series method can be directly adopted to develop a 
general solution for ordinary differential equations with variable coefficients. Very 
high-order terms must be considered to obtain an accurate solution and this 
requirement can cause numerical difficulties. To overcome these difficulties, a domain 
decomposition technique is used in conjunction with the power series method to 
establish a general solution of Eqs. (4). 

 

Fig. 2 Sub-domains for [0, ] 
 
 

 



The range of  under consideration is first divided into a number of sub-domains 
(see Fig. 2). A series solution toEqs. (4) is established in each sub-domain. 
Consequently, a general solution cover the whole  domain is constructed from these 
series solutions in the sub-domains by imposing the continuity conditions between each 
pair of adjacent sub-domains. This process isa very convenient means of constructing 
solutions that can be used to analyze multi-material wedges, whicharealso considered 
in this work. 

To establish the power series solution for sub-domain iwhere 1i i     , the 
variable coefficients in Eqs. (4) are expanded in terms of the power series of   with 
respect to the middle point of the sub-domain, i : 
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Similarly, the solutions toEqs. (4) in the sub-domain are expressed as 
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Substituting Eqs. (5)and (6) into Eqs. (4) yields the recurrence relations among the 

coefficients in Eqs.(6), andthe coefficients 
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to be determined.  
When the range of   is decomposed into n sub-domains, a total of 10n 

coefficients must be determined in all of the sub-domain solutions that are constructed 
using the above procedure. These solutions must satisfy the continuity conditions 
between pairs of adjacent sub-domains. These include continuities of tractions, 
mechanical displacements, electric displacements, electric potential and magnetic 
potential. These continuity conditions yield 10(n-1) algebraic equations. Homogenous 
boundary conditions at 0   and    must be satisfied, yielding another ten 
equations. As a result, 10n coefficients are to be determined from 10n homogenous 
algebraic equations. A nontrivial solution for the coefficients yields a10n10n matrix with 
a determinant of zero. The roots of the zero determinant (m ), which can be complex 



numbers, are obtained herein using the numerical approach of Müller (1956); they are 
ordered as Re[ i ]Re[ 1i  ] (i=1, 2, 3,…). 

 

3. VERIFICATION OF SOLUTION 

 
To validate the proposed solution, convergence studies for Re[ 1 ] (real part of 1 ) 

are conducted by increasing the number of sub-domains or increasing the number of 
polynomial terms in each sub-domain, and the convergent solution is compared with the 
published result. The wedge under consideration is made ofBaTiO3-CoFe2O4 particulate 
composite, which is a typical MEE material. According to the macroscopic mixture rule, 
the composite material properties of this MEE material are related to the material 
properties of BaTiO3 and CoFe2O4 by (Song and Sih 2003) 
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ij ij I ij IV V , (7) 

 

where B
ij  and  F

ij denote the material properties of BaTiO3 and CoFe2O4 (Table 1), 

respectively, and IV  is the volume fraction of the inclusion BaTiO3. The material 

properties in Table 1 were taken from Wang et al. (2011).  
The homogeneous boundary conditions can be specified as follows: (1) 

mechanical boundary conditions, 0r z        (traction free) or 0r zu u u    
(clamped); (2) magneto-electrical boundary conditions, 0D B  
(magneto-electrically open) or 0    (magneto-electrically closed).For simplicity, 
four letters are utilized to specify the boundary conditions along the two radial side faces 
of a wedge with vertex angle  . The first and third letters indicate mechanical boundary 
conditionsat   0 and   , respectively; C and F specify clamped and traction-free, 
respectively. Similarly,the second and fourth letters represent the magneto-electric 
boundary conditions at   0 and   , respectively; C and O denote 
magneto-electrically closed and open boundary conditions, respectively.  

To compare with the published result, the convergence study is conducted for an 
MEE wedge with o360  and having polarization direction along the z axis. For such a 
wedge, the out-of-plane deformation and in-plane electric and magnetic fields are 
independent of in-plane deformation and out-of-plane electric and magnetic fields. The 
wedge is made of BaTiO3 and CoFe2O4 with 50%IV   for o o0 180  and with 

20%IV   for o o180 360   and has FOFO boundary conditions. Notably, for 
comparison, 6 2 2

11 100 10 /Ns C    for CoFe2O4, as in the work of Liu and Chue 
(2006), was used for the results in Table 2, which shows the results obtained using 
different numbers of sub-domains and polynomial terms for each sub-domain. Table 2 
demonstrates that the convergent result, which is consistent with the result of Liu and 
Chue (2006), could be obtained by increasing the number of sub-domains or the 
number of polynomial terms for each sub-domain. 

 
4. NUMERICAL RESULTS 



This section presents numerical results of Re[ 1 ],taking into account the effects of 
material components, boundary conditions, polarization direction and geometry on the 
strength of the singularities of stress, electric displacement and magnetic flux. When 1
shown in a figure are all real, 1 , rather than Re[ 1 ], is used to label vertical axis of the  

 

 

Table 1 Material properties 

 

Parameters BaTiO3
# CoFe2O4

# 

(GPa) 166 286.0 

 (GPa) 77 173.0 

 (GPa) 78 170.5 

 (GPa) 162 269.5 

 (GPa) 43 45.3 

 (C/m2) 11.6 0. 

 (C/m2) -4.4 0. 

 (C/m2) 18.6  0. 

 (N/Am) 0. 550.0 

 (N/Am) 0. 580.3 

 (N/Am) 0. 699.7 

 (C2/Nm2) 112.0×10-10 0.8×10-10 

 (C2/Nm2) 126.0×10-10 0.93×10-10 

 (Ns2/C2) 5.0×10-6 590.0×10-6 

 (Ns2/C2) 10.0×10-6 157.0×10-6 

11g (Ns/VC) 0. 0. 
33g (Ns/VC) 0. 0. 

Note: #: data from Wang et al. (2011). 
 

 

figure. The numerical results herein were obtained by dividing the whole domain of   

into eight sub-domains and using series solutions that comprise ten terms for each 

sub-domain. The - -x y z  coordinate system is formed by rotatingthe x-y-zcoordinate 

system counter-clockwise about the y-axis through an angle y , so the angle between 

the polarization direction of an MEE wedge and its thickness direction is y . 
 
 



Table 2 Convergence of Re[λ1] for an MEE wedge 
 

Number of 

Sub-domains 
Terms 

       Liu and Chue 

(2006) 

 6 8 10 12 15  

3 0.4978 0.4417 0.4998 0.4750 0.4999 

0.5000 
4 0.4963 0.4999 0.4984 0.4999 0.4999 

6 0.4993 0.4999 0.5000 0.4999 0.5000 

8 0.4999 0.4999 0.5000 0.5000 0.5000 

 
 

4.1Wedges made of a single MEE material 
Figure 3showsRe[ 1 ] for BaTiO3-CoFe2O4 wedges with  20%IV ,   o270  and 

different boundary conditions varying with  y , while Fig. 4 displays the results for 
wedges with   o360  . As expected, the results are symmetric with respect to  y =90o. 
Changing the polarization direction may cause 1  changing from real numbers to 
complex numbers and vice versa. For example, 1 for FCFC wedges are complex for 

o44  y  o136 . Gradually changing  y  form 0o to 90o leads the increase or 
decrease of Re[1], depending on  and boundary conditions. Varying  y results in 
larger changes of Re[1] for FCFC and COCO wedges with  o270  than those for 
wedges with  o360  , and the change can reach 9%.  
 
 

 
Fig. 3 Variation of Re[ 1 ] with 

polarization direction for MEE wedges 
with o270   

 
Fig. 4 Variation of Re[ 1 ] with 

polarization direction for MEE wedges 
with o360   



 
 

Fig. 5 Variation of Re[ 1 ] with 
polarization direction for MEE/Si wedges 

with o270   

Fig. 6 Variation of Re[ 1 ] with 
polarization direction for MEE/Si wedges 

with o360   

 
Fig. 7 Variation of Re[ 1 ] with 

polarization direction for MEE/MEE 
wedges with o270 

Fig. 8 Variation of Re[ 1 ] with 
polarization direction for MEE/MEE 

wedges with o360   



4.2Bi-materialWedges  
This section concerns bi-material wedges with the same geometry as those 

considered in the preceding section. Figures 5 and 6 show Re[1] varying with  y  
forBaTiO3-CoFe2O4/Si wedges, in which Siis in the region of o180     , while 
Figs. 7 and 8 illustrate the results for wedges made of BaTiO3-CoFe2O4 with  50%IV  
in 0o   180o and BaTiO3-CoFe2O4 with  20%IV  in 180o    . Notably, when 
specifying the boundary conditions in Figs. 5 and 6, “-“ denotesthe absence of any 
magneto-electricalboundary conditions at  .  

Figure 5 shows that 1  for wedges with   o270  are all real, and different 
polarization directions cause small changes of 1 with less than 3%. It is interesting to 
observe that 1 for wedges with COC- boundary conditions are very close to those for 
wedges with CCC- boundary conditions. Free-free boundary conditions result in more 
severe singularities than clamped-clamped boundary conditions. However, these 
observations are not valid to the results for wedges with   o360  in Fig. 6. The 
orientation of polarization may change the order of the singularity by approximately 5%. 
Comparing Figs. 5 and 6 with Figs. 3 and 4, respectively, discovers that bi-material 
wedges with o270    and free-free mechanical boundary conditions have stronger 
singularities than wedges made of a single MEE material, while wedges with CCCC 
boundary conditions show an opposite trend, which is also observed for wedges with 

o360    and CCCC boundary conditions.  
Figure 7 demonstrates thatchanging the direction of polarization can change Re[ 1 ] 

by up to approximately 10% for wedges with o270    and COCO boundary conditions, 
while the changes of Re[ 1 ] are less than 3% for wedges with FOFO and CCCC 
boundary conditions.  Figure 8 discloses that varying the direction of 
polarizationonlychange Re[ 1 ] of wedges with o360    and different boundary 
conditions by less than 4%.Comparing Fig. 8 with Fig. 4 finds that bi-material MEE 
wedges with o360    yield less severe singularities than do wedges made of a single 
MEE material. 

 
5. CONCLUSIONS 

This study found an asymptotic solution to anMEE wedge to investigate 
geometrically-induced magneto-electro-elastic singularities at the vertex of the wedge 
based on three-dimensional magneto-electro-elasticity theory in a cylindrical coordinate 
system.The piezoelectric material has an arbitrary direction of polarization. The solution 
was obtained using an eigenfunctionexpansion approach in conjunction with a power 
series technique to the three-dimensional equations of motion and Maxwell’s equations, 
which are five coupled partial differential equations in terms of the displacement 
components and electric and magnetic potentials.The solutions was validated by 
performing convergence studies of Re[ 1 ] for a BaTiO3-CoFe2O4 wedge with 
polarization in the thickness direction, and comparing the convergent Re[ 1 ] with the 
resultpublished for a wedge under anti-plane deformation and in-plane electric and 
magnetic fields. 



The proposed solution was employed to examinesingularities in wedges that 
comprise a single magneto-electro-elastic material (BaTiO3-CoFe2O4), 
boundedMEE/isotropic elastic materials (BaTiO3-CoFe2O4/Si), or MEE/MEE materials 
(BaTiO3-CoFe2O4( 50%IV  )/BaTiO3-CoFe2O4( 20%IV  )).The value of Re[ 1 ], which is 
directly related to the order of the singularity, is displayed for different wedge angles, 
combinations of boundary conditions, and directions of polarization. As expected, the 
polarization direction may significantly affect Re[ 1 ]. 
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