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ABSTRACT 

In contrast to traditional modal identification methods processing structural 
accelerations for modal parameter identification, a multiple reference impact testing 
method using long-gauge fiber optical sensors and the related data processing 
approach are proposed. First, macro strains of key structural elements during the impact 
testing are measured through long-gauge fiber optic sensors, which subsequently are 
used to estimate the strain frequency response functions (FRFs) of the structure. 
Second, a method is proposed to estimate strain mode shapes from the strain FRFs, 
and corresponding displacement mode shapes are calculated by applying an improved 
conjugate beam method. Finally, the strain flexibility character of the structure is 
identified by using the identified strain and displacement mode shapes with 
normalization. The advantage of long-gauge fiber optic sensors measuring averaged 
strains in a long length (e.g., 1 meter) provides the opportunity for strain modal analysis. 
The output of the proposed method, strain flexibility, is meaningful for static strain 
prediction and structural capacity evaluation. Examples investigated successfully 
verified the effectiveness of the proposed method for structural strain flexibility 
identification.

Key words: long-gauge FBG sensors, dynamic macro strain, strain modal analysis, 
strain flexibility identification. 

1. INTRODUCTION 

Various kinds of Structural Health Monitoring (SHM) approaches have been 
developed for the assessment and management of civil infrastructures, such as static 
load test, ambient vibration test, and impact test (Adewuyi and Wu 2011; Hsu et al. 
2011). As limited available funds, infrastructure owners, operators and managers are 
being forced to optimize their available resources to further the state-of-the-art in 
diagnostics and prognostics for civil infrastructure systems. Ambient vibration test has 
been widely used as a basis for an evaluation of infrastructure condition. It measures the 
structural response under ambient excitations such as traffic, wind, temperature and 
other ambient forces, thus,  it is easy to perform, especially for large-scale structures 
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which are difficult to excite by human-made forces (Carden and Brownjohn 2008; Zhang 
et al. 2009). A great number of case studies based on ambient tests of actual bridges 
have been carried out in the literature, e.g., the Golden Gate Bridge, the Z20-bridge, the 
Kap Shui Mun Bridge, the Hakucho Bridge, the Humber Suspension Bridge, and the 
Throgs Neck Bridge (Pakzad and Fenves 2009; Ko et al. 2002; Siringoringo and Fujino 
2008; Brownjohn et al. 2009; Peeters and Roeck 2001; Zhang et al. 2009). Processing 
ambient vibration data is able to output structural modal parameters such as frequency, 
damping and mode shapes through various modal identification methods (James et al. 
1995; Weng et al. 2008; Sohn et al. 2004; Catbas et al. 2004). However, it is still far from 
meeting the structure owners’ expectations because they generally intend to know much 
more detailed information about the investigated structure, for instance, the stiffness 
distribution and damage conditions.  

Compared to the ambient vibration test which only identifies structural modal 
parameters, the Multi-Reference Impact Testing (MRIT), which utilizes hammer/shaker 
hitting at a single or multiple points to excite the structure and measuring both the input 
impacting forces and the corresponding structural acceleration responses at selected 
positions, is able to extract much more detailed structural modal parameters sufficient 
for identifying the structural flexibility, from which the structural deflection under any 
static load can be successfully predicted. Namely, the impacting test has the assets to 
output both dynamic (frequencies and mode shapes) and static (flexibility) 
characteristics. Case studies of several short/middle span bridges have illustrated that 
the predicted deflections from the MRIT data were comparable with those from the truck 
static load test. Thus, the identification of the flexibility from impact testing is promising. 
Though, the drawback of the traditional MRIT is that it only identify flexibility from 
accelerations for deflection prediction, while the bride maintenance codes generally 
require both deflection and strain information for capacity evaluation (AASHTO 2003 
Guide Manual for Condition Evaluation and LRFR of Highway Bridges). It will be perfect 
if the strain flexibility feature of the structure can also be identified during the impact 
testing through the strain modal analyses. 

The theory of strain modal analysis has been developed for a long time (Adewuyi 
and Wu 2011; Li and Wu 2005, 2006, 2007). Yam et al. (1996) have found that the strain 
mode shapes are more sensitive to structural local changes than the displacement 
mode shapes. However, traditional foil strain gauges are not suitable for large-scale civil 
SHM not only because of the problem of stability, durability and long-term reliability but 
also for the reason that they are basically ‘point’ sensors. It may therefore be too 
impractical to deploy sensors to all elements and components considered possibly 
critical. Moreover, strain measurements from traditional point sensors reflect structural 
local, not global, information. Thus, detecting strain mode shapes using conventional 
sensors is challenging. With the recent advances in sensors and sensing technology, 
measurement equipment and signal processing techniques, structural dynamic 
properties can be measured more accurately and reliably. Specifically, long-gauge Fiber 
Bragg Grating (FBG) optic sensors are more promising sensing alternatives for civil 
SHM systems which were used for monitoring the strain responses of the structure. Vast 
literature on the development of optic FBG distributed strain sensors, and their 
applications in SHM of civil infrastructure systems can be found in Sohnet et al. (2003), 
Ansari (1997), Inaudi (2001), Schulz et al. (2001), and Casas and Cruz (2003). Some 



basic advantages of FBG include flexibility, embed ability, multiplicity, immunity to 
electro-magnetic interference. Especially, Wu et al. (2006, 2011) developed a 
long-gauge FBG sensor, which has the unique feature to measure the averaged strain 
over arbitrary gauge lengths. The dynamic strain output through this novel sensor not 
only reflect local, but also global structural information by designing a long-gauge of the 
sensor , for instance, 1~2 meters.   

Given the motivation and background presented previously, in this article, a new 
method to identify structural strain flexibility from the multiple reference impact test data 
with a novel long gauge FBG sensor is proposed. Firstly, distributed strain 
measurements are outputted through long-gauge optic FBG sensors during the impact 
test, and subsequently the strain FRFs are estimated from the MRIT measurements. 
Second, a method is proposed to identify strain mode shapes based on the feature of 
the estimated strain FRFs, then displacement mode shapes are calculated from the 
strain mode shapes through an improved conjugate beam approach. Finally, relying on 
long gauge strain mode shapes and displacement mode shapes, the structural strain 
flexibility are identified. The merit of the proposed method is that (1) the long-gauge FBG 
sensor is used for macro strain measurement, which is more appropriate for strain 
modal analyses than that from point strain gauges; (2) the multiple reference impact test 
method is employed to output accurate strain FRFs, and (3) the method to identify strain 
mode shapes, displacement mode shapes and strain flexibility has been proposed by 
processing the macro strain time histories. 

2. Long-gauge FBG sensors and theory for strain flexibility identification 

2.1 Distributed strain measurements with long gauge FBG Sensors 
The technology of distributed strain sensing is greatly required in engineering 

practices of civil infrastructure monitoring and maintenance. Fiber Bragg Grating (FBG) 
sensors are gaining increasing attention because it provides many advantages 
compared to the metal foil strain gages, for instance, light weight and high precision. An 
long-gauge fiber optic sensor has been developed by the authors based on the 
advantage of the FBG technology (Li and Wu 2007; Wu and Zhang 2011). Other than 
the merit of high spatial resolution, the developed sensor was designed to have a long 
gauge, thus it is able to measure the average strain within the gauge length. To avoid 
unsustainable costs for the sensors, the concept of salient area monitoring has been 
developed, which installs long gauge FBG sensors in key regions of an engineering 
structure and connects sensors in series to make an FBG sensor array for area 
macro-strain measuring. In this way, the measurement of distributed strain sensing 
scheme will be implemented for an accurate and effective strain monitoring in civil 
engineering structures. 

Although the obvious potentials of FBG sensors for SHM, their practical applications 
to civil engineering structures still face some primary technological challenges due to the 
fragility of bare fiber whose coat has to be removed from commercial optical fiber to 
fabricate FBG with high sensitivity. Moreover, appropriate methods for FBG sensor 
packaging and bonding with host structures should be carefully considered to protect 
the brittle fiber from harsh environment and ensure measurements of interest to transfer 
fully from object structure to sensors. In addition, the traditional problem that exists in 
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The multiple reference impact test method with the long-gauge sensor is proposed, 
which simultaneously measure the impact force and strain data. The methods to 
process the impact force and accelerations are available in the literature. In this section, 
the theory to deal with the impacting force and macro strain data from the MRIT are 
developed for strain modal analyses and strain flexibility identification. 

2.2.1 Strain FRFs 
The displacement FRF of point p due to the force applied in q is defined by: 
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where ߱௥ ൌ ට
௄ೝ

ெೝ
 is the r-th modal circular frequency of the structure, ܭ௥ and ܯ௥ are 

modal stiffness and modal mass respectively, ߦ௥ ൌ ஼ೝ

ଶெೝఠೝ
 is the structural ݎ െ  modal ݄ݐ

damping ratio, and ߶ is structrual mode shape. 
In a general beam as shown in Fig. 2, each node contains two DOFs (vertical 

displacement and rotation). Under the condition of single-load exitation, the long gauge 
strain measurement in substructure ݉ is: 
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Where ௠ߤ ൌ ௛೘

௅೘
, ݄௠ is the distance from the sensor to the neutral axis of the beam 

while ௢ߠ and ߠ௣ are the rotation of each DOF. 

Fig. 2 Relation between rotation and macro-strain 

The long guage strain FRF of the element m is: 
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 Therefore, it is .݋ ௢௤ሺ߱ሻ corresponds to the angular displacement FRF of the nodeܪ
derived that  
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The above equation is derived to be below by defining ߶ఌത
௠௥ ൌ ௠ሺ߶௢௥ߤ െ ߶௣௥ሻ

which indicates the long guage strain mode shape, 
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the equation above represents long-guage strain FRF which incorporates the mass, 
stiffness and damping ratio of the structure and how it responds to a known input to the 
system. Thus it can be used to estimate structural strain modal parameters. 

2.2.2 The proposed strain modal analysis method 



By comparing Eqs. (1) and (5), it is found that there are mainly two diffrences 
between strain FRF matrix and displacement FRF matrix: (a) the strain FRF matrix is an 
asymmetric matrix; (b) in the strain FRF matrix, each column reflects the modal strain 
information of the structure, whereas each row represents the modal displacement 
information. Similar to Eq. (5), the strain FRF of the element ݍ strain resposne under 

the force excitation at the node ݉ is ܪఌത 
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ሺ߱ሻ  namely the strain FRF matrix is an 

asymmetric matrix. 
Secondly, the value of ݎ െ ݄ݐ  component of strain FRF matrix in ߱௥  is 
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frequency and mode shape, so at the ݎ െ frequency ߱௥ ݄ݐ , we can suppose that  
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represents structural modal information. 
Similary, For ௥ܪఌത

௠௤
 
ሺ߱௥ሻ, extending a row at same order of frequency ߱௥, we have 

௥ܪఌത
௠:

 
ሺ߱௥ሻ ൌ ሼ߶௥ሽ் థ೘ೝ

ഄത

ଶ௝కೝெೝఠೝ
మ  , where ሼ߶௥ሽ் is the ݎ െ  vertical displacement mode ݄ݐ

shape and the coefficient థ೘ೝ
ഄത

ଶ௝కೝெೝఠೝ
మ is a constant relative to the ݎ െ  frequency and ݄ݐ

mode shape, so at the ݎ െ ݄ݐ  frequency ߱௥ , we can suppose that ఌതܪ
௠:

 
ሺ߱௥ሻ ൎ

 ௥ܪఌത
௠:

 
ሺ߱௥ሻ , which means that any member of the strain FRF matrix represents 

structural vertical displacement information. The feature of the strain FRF described 
above is easily seen from the following eatuaiton:
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where: ௃ܰ and ௌܰ represent respectively the number of displacement mode shapes 
and strain mode shapes of all nodes and ܥ௥ሺ߱ሻ ൌ ௥ሺ߱௥ܯ

ଶ െ ߱ଶ ൅  ,௥߱௥߱ሻ. In briefߦ2݆
based on this feature, strain mode shapes is proposed to be idendified by picking the 
peaks of the FRFs in column as shown in Fig. (3). Similarly, displacement mode shaes 
can be identified from the strain FRFs in a row.  

 th column-ݍ

 th row-݌



Fig. 3 Strain modal parameter identification based on the strain FRF features 

2.2.3 The improved conjugate beam approach for displacement mode shape 
estimation 

Displacement mode shapes can be estimated directly from the strain FRF as 
presented above, however it requries a row of the FRF elements. It means that all nodes 
need be impacted during the multiple reference impact test, which significantly increase 
the experiment cost. An improved conjugate beam approach is used to calculate 
displacement mode shape from the estimated strain mode shape.  

According to the conjugate beam theory, the bending moment distribution ܯሺݔሻ on 
the real beam is considered as load ditribution ݍ ഥሺݔሻ on the conjugate beam, then its 
corresponding bending moment distribution ܯഥሺݔሻ is equivalent to real beam’s vertical 
displacement distribution ݕሺݔሻ , namely: ݕሺݔሻ ൌ ெഥሺ௫ሻ

ாூ
. Hereafter, the symbol ഥ

indicates that the parameter concerned is referred to the conjugate beam. For the 
Euler-type beam, the relationships between its deformation ߝሺݔሻ, curvature ߢሺݔሻ and 
bending moment ܯሺݔሻ are linear as shown below: 
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                          (7) 

thus:
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௭
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where z is the distance from the beam’s surface to the neutral axis. 



Assuming that the conjugate beam’s load distribution is equal to ݍത ൌ ఌሺ௫ሻ

௭
, we can 

conclude that the corresponding bending moment distribution ܯഥሺݔሻ of the conjugate 
beam is exactly identical to the real beam’s vertical displacement distribution ݕሺݔሻ.

The improved conjugate beam method is based on the discretization of real beam’s 
long gauge measurements. The nodal vertical displacement of the real beam is 
calculated by its long gauge strain measured from FBG sensors. Since the FBG sensors 
measure the long gauge macroscopic strians which are diffrent from the traditional 
punctual strains, moreover, they measure the average strains within the gauge length, 
so precessing with the discretization of the continous problem, it is possible to evaluate 
the nodal displacements. 

Due to the fact that a simply supported beam’s corresponding conjugate beam is 
itself, so the elementary long gauge strain of the real beam and the corresponding load 
distribution on conjugate beam is shown in Fig.  as follow: 

Fig. 4 Scheme of conjugate beam theory for simply supported beam 

for the equilibrium, the reaction at the left support of the conjugate beam is: 
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where ത௜ݍ ൌ ఌ೔

௭
 , thus the bending moment of midpoint in each element of conjugate 

beam (i.e. the vertical displacement of the same point in the real beam) is: 
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Whereas in the case of a cantilever beam, the bending moment of midpoint in each 

element of conjugate beam is: 
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when we consider the measurement of long gauge strain of an element ε୧ as its strain 
mode shape Ԅ୧

க, the vertical diplacement mode shape in the middle joint of the element 
Ԅ୧

୴ can be estimated by the improved conjugate beam theory. 

2.2.4 Structural strain flexibility identification with known mass 
The structural displacement in terms of modal coordinates can be written as follow: 
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where ሾ݉௥ሿ,ሾܿ௥ሿ and ሾ݇௥ሿ are respectively system mass matrix, damping ratio and 
stiffness matrices expressed in natural coordinates. Solving Eq. (13), we have: 
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therefore, in physical coordinates system is: 
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From the following relationship between strain and displacement: 
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where  .is the distance from the test piont and neutral axis of the beam ݖ

By substituting Eq. (15) into Eq. (16), we have: 
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where ሼ߶ ሽ்ሾܨሿ  represents the energy gained by the structure from outside. 
Considering it as constant during differential operation, for a costant section beam, by 
Eq. (17), we can obtain: 
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where ሾߔ ሿ is the displacement mode shapes of the structure, making డమሾఃሿ

డ௫మ ݖ ൌ ሾߔఌሿ, as 
ሼߔఌሽ is the structural strain mode shape. By Eq. (18), we have: 
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so the strain flexibility matrix is: 
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where ሼߔఌሽ is the structural strain mode shapes, as we can see from the above 
equation that the strain flexibility matrix is asymmetry and it is important to note that for 
the identificaiton of strain flexibility ൣ݂ 

ఌ൧, the displacement vector Φ௥ and strain mode 
shapes vector Φ௥

க  need to be normalized as mentioned following: 
The ݇ െ strain mode shape ሼ߶௞ ݄ݐ

ఌሽ obtained by strain modal analysis can be 
processed through the conjugate beam theory for the identification of ݇ െ  vertical ݄ݐ
displacement mode shape in midpoint of the element ሼ߶௞

௩ሽ.  The normalization factor of 
the vertical displacement mode shape is: 

ܽ௞ ൌ ඥሼ߶௞
௩ሽ்ሾܯሿሼ߶௞

௩ሽ                             (21) 
thus, the normalized-vertical displacement mode shape is: 

ሼ߶ത௞
௩ሽ ൌ

൛థೖ
ೡൟ

௔ೖ
                                 (22) 

owing to the linear relationship between strain mode shape and vertical displacement 
mode shape, the strain mode shape has the same normalization factor as the vertical 
displacement mode shape, so the normalized strain mode shape is: 

ሼ߶ത௞
ఌሽ ൌ ሼ߶௞

ఌሽ/ܽ௞                               (23) 
where the symbol ഥ  indicates normalized parameter. 

After calculating the structural strain flexibility, the static strain can be predicted 
multiplying it by static load vector acting on the structure. The static strain represents an 
important index in SHM practices for short/middle span bridges. A chart flow was 
reported to better clarify the steps followed by numerical examples studied in section 3 
for static strain identification as shown in Fig. 5:  



Fig. 5 Flow Chart of strain flexibility identification 

3. Cantilever beam example 

To verify the validity of the proposed method for the structural strain flexibility 
investigation, a cantilever beam as shown in Fig. 6 is first investigated. The length of the 
beam is 1.6 m with a cross section of 80×5 mm , the Young’s modulus ܧ ൌ ,ܽܲܩ 206
density ߩ ൌ 7697 ݇݃/݉ଷ and Poisson’s coefficient υ ൌ 0.3 . Eight long-gauge FBG 
sensors are employed on this beam as shwon in Fig. 6, and the gauge of each sensor 
has a length of 0.2 m. Applying the impacting force at nodes 3, 5, 8, respectivly, the time 
history of long guage strain responses are simulated by the Sap2000 software. 10% 
white noise is added into the impacting force and dynamic strain data to simulate 
observation noise. A typical impacting force and corresponding strain curve are plotted 
in Fig. 7 for illustation purpose. 

Fig. 6 Outline of cantilever beam in FEM 
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Fig. 7 Typical impact force and strain curve 

Data pre-processing techniques inlcuidng the filtering and averaging are used to 
improve the quality of the data. Then the auto/cross power spectra are calculated by 
using the impact force and the macro strain time histories. The strain FRFs are 
estimated using the H1 algorithm, which is an appropriate FRF estimation method by 
minimizing the noise in the output data. The application of the impacting forces at 3 
reference nodes and the corresponding output of long gauge strain responses at 8 
elements imply that the obtained FRF matrix’s size is 8 by 3. In addition, The long gauge 
strain FRFs of 8 element with the impacting force on the node 3 are illustrated in Fig. 8. 
It is seen that the abscissas of the circles in the diagrams indicate the natural 
frequencies. The estimated natural frequencies of the first three modes are respectively 
1.944 Hz, 11.848 Hz and 32.682 Hz, while those from the modal analysis in the 
Sap2000 software are 1.926 Hz, 11.861 Hz and 32.697 Hz respectively. By picking the 
peaks of the FRF elements in a column in each mode, the strain mode shapes are 
estimated as presented in the second section. The estimated strain mode shapes in the 
first three modes are ploted in Fig. 9(a). The agreement between the estimated mode 
shapes and the exact values from the finite element analysis plotted in the same figure 
illustrate the accurcy of the strain mode shape identificaiton.

0 0.5 1 1.5 2
-1000

0

2000

4000

Time (Sec)

Fo
rc

e 
(N

)

0 0.5 1 1.5 2
-5

-3

0

3

5
x 10

-4

Time (Sec)

St
ra

in



Fig. 8 The typical strain FRFs of the cantilever beam 

Furthermore, the improved conjugate beam method is emplyed to estimate the 
vertical displacement mode shapes from the identified strain mode shapes. 
Comparative assessments between them and the exact values from the finite element 
analysis are illustrated in Fig. 9(b). It is necessary to point out that the red circles 
indicate the identified vertical displacement in middle joint of each segment and the blue 
lines show the FEM-based results of vertical displacement mode shapes in the middle 
point of each element. As perfect overlaps can be seen between two lines, it can be 
confirmed that values obtained by two methods are consistent. 
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Fig. 9 Identified modal parameters, (a) strain mode shapes; (b) vertical displacement 
mode shapes 

By assuming the mass matrix of the structure can be calculated by using structural 
material amd geometrical parameters, the identified strain mode shapes and 
displacement mode shapes are nomalized by Eqs. (22) and (23), then they are used to 
to estimate structural strain flexibility through Eq. (20). The identified strain flexibility 
matrix of the cantilever beam is plotted in 오류! 참조 원본을 찾을 수 없습니다.10. It 
should be noted that during the strain flexibility identification, all displacement mode 
shapes are referred to middle joint’s values, thus each element of the strain flexibility 
matrix, ௜݂௝

ఌ ,indicates the long gauge strain value on the element ݅ due to the force 
applied on the node ݆. It is seen from Fig. 10 that the strain flexibility matrix of the 
cantilever beam is obtained by the intersection between a horizontal plane and a 
inclined one. The horizontal plane indicates strain flexibility values are null for free 
edges while the inclined one represents a linear relation among the curvatures of the 
elements and the corresponding positions of impacting forces. 

Fig. 10 Strain flexibility matrix of cantilever beam 

After the strain flexibility is identified, it can be used to predict structural strain 
response under any static load by multiplying the load by the strain flexibility matrix. By 
applying contemporaneously an unitary force 1N at midpoints of 8 elements of the 
cantilever beam, long gauge static strain value of each element is estimated as shown in 
Fig. 11. It is seen that the predicted static strain values from the identified flexibility by 
using the first 3 modes in Eq. (20) agrees well with the static analysis results from the 
Sap2000 software, which successfully verified the effectiveness of the proposed 
method.



Fig. 11 Static strain prediction from the identified strain flexibility matrix 

4.Conclusions

This article pressents a method of structural strain flexibility identification from the 
multiple reference impact test data. The following conclusions can be drawn based on 
the research so far: 

I. Application of the long-gauge FBG sensors in SHM practices is promising owing 
to the fact that it has the ability of measuring both local and global information of 
the structure, thus it provides new opportunity for strain modal analysis theory 
development;

II. The theory to identify modal parameters including frequency, strain mode shapes 
and displacement mode shape are developed in this article by processing the 
dynamic macro strain. Examples illustrated that the developed modal parameters 
are comparable to the exact values even in the condition that observation noise 
exists. Accuracy of the identified modal parameters is crucial for the strain 
flexibility identification. Investigation of more advanced and robust methods are 
further required on the basis of the results achieved in this article. 

Strain flexibility identification studied in this article is seldom investigated in the 
literature. The success of identify structural strain flexibility is meaning for safety 
evaluation of structures especially for short/middle span bridges. Both displacement and 
strain are measured in the traditional truck load test, while the static strain can be 
predicted from the impact test data through the strain flexibility identification proposed in 
this article. Thus it is potential to carry out rapid capacity evaluation of short/middle span 
bridges through performing the impact test, instead of the expensive truck load test. 
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