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ABSTRACT 

This paper contributes to the prediction of fatigue damage accumulation in metallic 
structures that undergo vibrations due to unknown input forces during their operational life. 
In estimating the strain in a point of interest, the displacement at that point and its vicinity 
would be needed; therefore, a reliable state estimate could lead to reliable fatigue damage 
identification. The uncertainties that arise due to sensor noise, numerical modeling and the 
unknown excitation render the unknown state and input estimation a challenging task; 
rendering the research to achieve a robust solution still in progress. A number of methods 
and techniques in existing literature have shown promising results in overcoming the 
issues associated with these uncertainties; however, they are susceptible to instabilities 
stemming from unobservability issues and accumulation of integration errors in the 
estimates. In this paper, a dual implementation of the Kalman filter is proposed to estimate 
the unknown input and states of a linear state-space model. The successive structure of 
the suggested filter prevents numerical issues attributed to unobservability and rank 
deficiency, and the regulatory parameter for input estimation furnishes a tool to avoid the 
so-called drift in the estimated input. Via proper calibration of the proposed tool, a 
reasonable estimate of the state and thus the fatigue damage could be accomplished. 

1. INTRODUCTION 
This paper contributes to the problem of state estimation in the entire body of the 

metallic structures that undergo vibrations due to unknown input forces during their 
operational life, aiming at prediction of fatigue damage identification. The idea of using the 
estimated response of the structures for fatigue damage identification was first suggested 
by Papadimitriou et al. (Papadimitriou, Fritzen, Kraemer, & Ntotsios, 2011); where a
technique was introduced that employs the Kalman filter for estimating power spectral 
densities of the strain in the body of the structure thereby predicting the remaining fatigue 
life. To estimate the fatigue damage, a time history of the strains in the hotspot points of 



the structure is required. To estimate the strain in a point of interest, the displacement field 
at that point is needed; therefore, a reliable state estimate could lead to reliable fatigue 
damage identification.  

The topic of estimation of the states of a partially observed dynamic system in an 
stochastic frame has been studied by many scientists and there are well developed 
algorithms to manage both linear (e.g. the Kalman filter (Kalman, 1960)) and nonlinear (e.g. 
the particle filter (Gordon, Salmond, & Smith, 1993), the unscented Kalman filter (Julier & 
Uhlmann, 1997)) state-space models. In dealing with structural systems, the states of the 
system typically comprise displacements and velocities of the response of the system at 
some points, namely degrees-of-freedom (DOF) on the structure. In practical cases, it is 
difficult or sometimes impossible to measure displacements and velocities of the system. 
Hence, when knowledge of the displacements and velocities is required, a state estimation 
algorithm could be used to infer these quantities from the commonly measured 
acceleration response, which depends on the states and input of the system through some 
relation. Among other researchers, Ching and Beck (J. Ching & Beck, 2007), Hernandez 
(Hernandez, 2011) Smyth and Wu (Smyth & Wu, 2007) and (Reynders & Roeck, 2008) 
have proposed frameworks for estimating the unknown states of a system using 
heterogeneous, noisy or incomplete observations, whereas other works also focus on the 
detection of damage (Gao & Lu, 2006), (Bernal, 2013) though limited structural feedback. 

The structural identification task is often one of nonlinear state estimation and 
parameter identification. In civil engineering the extended Kalman filter (EKF) has been the 
de facto standard in the past mainly due to its ease of implementation, robustness and 
suitability for real-time applications. In recent years, however, many alternative techniques 
have been proposed. In a first extension for alleviating the issues that arise through 
linearization in the EKF, Julier and Uhlmann (Julier & Uhlmann, 1997) have proposed the 
unscented Kalman filter (UKF), in which the evolution of the statistics of the state of the 
system is performed through a sampling scheme. It has been shown by Mariani and Ghisi 
(Mariani & Ghisi, 2007) that at the price of a higher computational burden, the UKF 
outperforms the EKF dealing with nonlinear parameter identification problems. Further 
works demonstrate the potential and versatility of particle-based methods within the 
context of nonlinear system identification (Eftekhar Azam, Ghisi, & Mariani, 2012) (Jianye 
Ching, Beck, & Porter, 2006), (E. N. Chatzi & Smyth, 2009), (Eftekhar Azam, Bagherinia, & 
Mariani, 2012), (E. N. Chatzi & Smyth, 2013), (Eftekhar Azam & Mariani, 2012)..  

Although the joint state and parameter identification task is a subject frequently 
addressed in recent years, the joint identification of state and input information is a topic 
less treated so far in the literature. Since, the uncertainties that arise due to sensor noise,
lacking or imprecise numerical models and the unknown excitations render the unknown 
input and state estimation a challenging task, the research to achieve a robust solution is 
still in progress. It this paper, the latter source of uncertainty, i.e. the lack of information 
regarding the input to the system is the core of the study. In practice, one common 
approach is to assume the unknown input as a zero mean white Gaussian process and 
make use of the aforementioned Bayesian techniques for state estimation; however, in 
many cases this assumption is violated and therefore it may lead to major adverse effects 



on estimation accuracy. To address this issue, a number of optimal filtering techniques in 
the presence of unknown input have been proposed. In a pioneering work, Kitanidis 
developed an unbiased minimum-variance recursive filter for input and state estimation of 
linear systems without direct transmission; his algorithm did not make any a-priori 
assumption on the input (Kitanidis, 1987). The latter filter is not globally optimal in the 
mean square error sense. Hsieh has proposed a new formulation of the Kitanidis filter 
which is more convenient for practical applications (Hsieh, 2000). Gillijns and De Moor 
proposed a new filter for joint input and state estimation for linear systems without direct 
transmission (Gillijns & De Moor, 2007a). Their filter is globally optimal in the minimum-
variance unbiased sense. Later Gillijns and De Moor developed a new formulation of the 
aforementioned filter which included a direct transmission term in its structure (Gillijns & 
De Moor, 2007b). 

In more recent years, Lourens et al. (Lourens, Papadimitriou, et al., 2012) have 
proposed an extension of the method developed in (Gillijns & De Moor, 2007b) to cope 
with the numerical instabilities that arise when the number of sensors surpasses the order 
of the model, i.e. when a large number of sensors is used in combination with a reduced-
order model assembled from a relatively small number of modes. This is commonly the 
case for structural identification problems. The modified algorithm was used to predict and 
estimate the input force and accelerations of a simulated steel beam, a laboratory test 
beam and a large-scale steel bridge. It was reported that, although the algorithm provides 
a reasonable prediction of the accelerations, the input force estimates are affected by 
spurious low frequency components that must be filtered out in this case. It is worth noting, 
that in dealing with joint state and parameter estimation, Chatzi and Fuggini (E. F. Chatzi, 
Clemente;, Accepted for publication) have proposed a technique to cope with the issues 
related to the spurious low frequency components in the displacement estimates by 
introducing artificial displacement measurements into the observation vector. Lourens et al. 
(Lourens, Reynders, De Roeck, Degrande, & Lombaert, 2012) have proposed an 
augmented Kalman filter (AKF) for unknown force identification in structural systems, and 
concluded that the augmented Kalman filter is prone to numerical instabilities due to un-
observability issues of the augmented system matrix. 

In this paper, a dual implementation of the Kalman filter is proposed to estimate the 
unknown input and states of a linear state-space model. It is assumed that a limited 
number of noisy acceleration measurements are available. The successive structure of the 
suggested filter prevents numerical problems attributed to unobservability and rank 
deficiency of the augmented Kalman filter. Additionally, it is shown that the expert guess 
on the covariance of the unknown input provides a tool for avoiding the so-called drift 
effect in the estimated input force and displacements. The drift is linked to the integral 
nature of these quantities in the presence of acceleration information. The effectiveness 
and performance of the proposed method is ascertained via a pseudo-experimental 
analysis carried out on a test shear building. It is concluded that, by fine-tuning the 
covariance of the fictitious process noise of the unknown input, a successful estimation of 
the state and thus the fatigue damage can be accomplished. 



The paper starts with a section devoted to a brief formulation of the state-space 
equations for linear dynamical systems. The next section introduces the dual scheme by 
use of the Kalman filter for estimation of both the unknown input and state of linear state-
space models and is followed by a section on the numerical comparison of the dual 
Kalman filter and the filter proposed by Gillijn and De Moor.  

2. Mathematical formulation of the problem 

A linear structural dynamics problem is typically formulated using the following 
continuous time second order differential equation: 

  ̈( )    ̇( )    ( )   ( )     ( )    (1) 

where  ( )       denotes the displacement vector and   ,   and         stand for the 
stiffness, damping and mass matrix, respectively.  ( )       is the excitation force, which 
herein is presented as a superposition of time histories  ( )       that are influencing 
some degrees-of-freedom on the structure as indicated via the           matrix, termed 
the influence matrix. 

In practice, when dealing with fine resolution finite element (FE) models, the dimension 
of the state vector in the Eq. ( ) may become relatively large; nonetheless the dynamics of 
the system could effectively be captured by a significantly smaller number of modes. To 
suppress the computational costs associated with the large FE models, Eq. ( ) is 
projected in the subspace spanned by a limited number of the undamped eigenmodes of 
the system. In this regard, consider the eigenvalue problem corresponding to Eq. ( ): 

             (2) 

Transforming the coordinate system of Eq. ( ) via the following mapping: 

 ( )    ( )

where  ( )              and pre multiplying by    yields: 

     ̈( )       ̇( )       ( )     ( )       ( )  (3) 

By imposing the mass normalization condition       , considering         

and assuming the damping is proportional, the Eq. (6) can be rewritten: 

 ̈( )    ̇( )     ( )     ( )       ( )    (4) 



where the components of jth entry of the diagonal damping matrix   are of the form      ,
in which    stands for the relevant modal damping ratio. Apparently, a truncated modal 
space could be substituted in Eq. ( ). The aforementioned equation can be discretized in 
time to constitute a state-space equation, and in so doing the following state vector is 
introduced: 

 ( )  [
 ( )

 ̇( )
]

consequently, Eq. ( ) can be written in the following form to define the process equation: 

 ̇( )     ( )     ( )     (5) 

where the system matrices are: 
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]

   [
 

      
]

Regarding the measurement equation let us consider the most general case by 
assuming that a combination of the displacements, velocities and accelerations can be 
measured. Hence, the measurement vector  ( ) assumes the following form:  

 ( )  [

    
    
    

] [
 ( )

 ̇( )

 ̈( )
]     (6) 

where   ,    and        are the selection matrices for the displacements, velocities and 
accelerations, respectively. By using equation of motion, Eq. ( ) could be transformed into 
state-space form: 

 ( )     ( )     ( )     (7) 

where the output influence matrix and the direct transmission matrix are: 
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Recombining Eqs. ( ) and ( ) through use of the relevant matrices, results into the full 
order state-space equations that are required to implement the input and state estimation 
algorithm. In case a reduced order state-space model is needed, a truncated eigenvector 
space must be substituted in Eq. ( ); hence the following variable transformation would be 
necessary: 

 ( )  [
   
   

]  ( )

where  ( ) is the reduced modal state vector: 

 ( )  [
 ( )

 ̇( )
]

The reduced modal state-space equation in continuous time will have the following form: 

 ̇( )     ( )     ( )      (8) 
 ( )     ( )     ( )      (9) 

while the relevant system matrices read: 

   [
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To discretize Eqs. ( ) and ( ), the sampling rate is denoted by    ⁄  and the discrete 
time instants are defined at        , for        . The discrete state-space equation 
can be expressed by following notation: 

                  (10) 
                (11) 

where: 

       ,   [   ]      ,     and     . 

3. Recursive Input and state estimation algorithm 

Consider the following discrete time state-space equation: 



               
      (12) 

                  (13) 

where ,    is the process noise assumed, zero-mean, normally distributed as       (    ),
and    is the zero mean, white, measurement noise      (   ). The problem at hand is 
to estimate the unknown input   and the hidden, or partially observed, state    of the 
system using the noisy observations    in an online fashion. In doing so, a dual 
implementation of the Kalman filter is proposed in this section. The proposed scheme 
could be divided into two stages, with the Kalman filter pertaining to both stages. At each 
time iteration, a fictitious process equation serving for calibration of the parameters of the 
system is introduced: 

          
       (14) 

where   
  is a zero mean white Gaussian process with an associated covariance matrix   .

Now, assume that an estimation of the state at time    is available; by using Eqs. (  ) and
(  ), a new state-space equation can be obtained, where, the observed quantity is   , the 
new state is    and the actual sought-for state    plays the role of a known input to the 
system: 

          
        

                   

Through implementation of the Kalman filter, an online estimation of      could be 
obtained. Then, once the estimation of      is performed, it can in a next step be 
substituted in Eqs. (  ) and (  ), and a subsequent Kalman filter implementation could be 
used for estimating     . The general scheme is described in detail in Table 1.

At this point, it is worth noting that, the procedure needs a-priori information on 
expected value and covariance of the state and input at time   . Moreover, similar to the 
augmented Kalman filter (AKF), the value of the process noise    for Eq. (  ) must be 
properly chosen so that an accurate estimate of the unobserved state and the unknown 
input could be achieved. In the jargon of system identification, the covariance noise of the 
sought-for parameter is sometimes called the tuning knob of the system, and typically 
heuristic and ad-hoc guidelines are prescribed for a proper adjustment (Bittanti & Savaresi, 
2000; Rajamani & Rawlings, 2009). Methods relying on the use of Bayesian techniques, 
maximizing the likelihood of measurements with respect to the noise parameters have also 
recently been proposed (Yuen, Hoi, & Mok, 2007). It is additionally, helpful to clarify the 
nature of the influence of the covariance matrices   ,     . The process noise covariance 
matrices reveal the confidence put on the utilized model of the system. The lower this is, 
the more accurate the model is considered to be. The observation noise covariance 
reveals the confidence put in the acquired measurements. The lower this is, the tighter the 
estimator is forced to fit the recorded data. 



In what follows, by use of an illustrative numerical example, the performance of the 
proposed algorithm, i.e. the Dual Kalman Filter (DKF) formulation, is evaluated against the 
Gillijns and De Moor filter (GDF), which is deemed as the most stable attempt so far in 
addressing the joint input and state estimation problem. It will be shown that once the 
covariance of the fictitious process equation of the input force is tuned properly, the so-
called drift in the estimates of the input force and the displacements is disappeared. 
Moreover, it is shown that the successive structure of the dual Kalman filter does not 
trigger unobservability issues of the AKF. 

Table 1: the general scheme of the two-stage Kalman filter-based input and state estimation algorithm 

- Initialization at time   :
  ̂   [  ]

  
 
  [(    ̂ )(    ̂ )

 ]
  ̂   [  ]

    [(    ̂ )(    ̂ )
 ]

- At time   , for         :

 Prediction stage for the input:
1. Evolution of the input and prediction of covariance input:

  
       

  
  
     

 
   

 Update stage for the input:
2. Calculation of Kalman gain for input:

  
 
   

  
  (   

  
     )

  

3. Improve predictions of input using latest observation:
 ̂    

    
 (      ̂       
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 Prediction stage for the state:
4. Evolution of state and prediction of covariance of state:

  
     ̂      ̂ 

  
        

    

 Update stage for the state:
5. Calculation of Kalman gain for state:

  
    

   (   
      )  

6. Improve predictions of state using latest observation:

 ̂    
    

 (      
    ̂ )

     
    

    
 



4. Simulated example 

To assess the performance of the proposed algorithm, a 4 DOF shear building (see 
Figure 1) with the following system properties is adopted: the value of the mass of each 
floor is assumed to be         , and the inter-storey stiffness of each floor is equal to    
     . Additionally, the modal damping ratio of each mode is assumed to be   . 

Throughout the numerical analysis section, it is assumed that only accelerations of the 
response of the structure at some of the storey levels are available. This is the common 
case in structural dynamics; in practice the displacements and velocities are difficult, or 
even sometimes impossible to measure. Therefore, the problem lies in estimating the 
displacements and velocities of all stories of the structure by using noisy observations 
acquired from acceleration sensors. In this section, it is assumed that the acceleration time 
history of the last floor is measured. The optimization of the spatial distribution of the 
sensors (Papadimitriou & Lombaert, 2012) is not within the scope of this research but 
would be an interesting issue to explore in a follow-up investigation. 

Figure 1: schematic view of a shear-type building 

To account for measurement errors, a zero mean white noise is added to the results of 
the direct analysis of structure. By varying the level of the covariance of the added noise 
different signal-to-noise ratios could be obtained. The first four undamped natural 
frequencies of the system are reported in the Table 2. 

The common trend in the state-of-the-art algorithms for unknown input and state 
estimation available in the literature (e.g. (Gillijns & De Moor, 2007a, 2007b; Hsieh, 2000;



Kitanidis, 1987)), is to avoid using any a-priori knowledge on the statistics of the input 
force, in an attempt to render the online estimation more practical. 

In order to compare the performance of different schemes, the time histories of the 
sought-for states are cross-compared. In the following examples, it is assumed that a
single noisy acceleration observation from the 4th floor of the shear building is available, 
and as for the enforced excitation, and a harmonic load is applied to the same floor. 

Table 2: The first four undamped natural frequencies of the structure 

vibration mode index 1 2 3 4

Undamped natural frequency
(Hz)

2.21 6.37 9.75 11.96

Regarding harmonic excitation, assume that a constant amplitude sinusoidal excitation 
is applied to the last floor of the building: 

                

where    denotes the amplitude of the force and   stands for the associated frequency. 
In current study, the      and             . Figure 2 shows the observed process, 
which is the actual acceleration time history of the last floor contaminated with a zero 
mean white Gaussian process featuring a standard deviation equal to         ⁄ .

Figure 2: Noisy acceleration time history of the last floor 
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Figure 3, shows the estimated displacement time histories of the fourth floor furnished 
by AKF, GDF and DKF. The   ,    and   are set to      ,       and     , respectively,
whereas the    used in DKF is set to         . Concerning the AKF, the variations of the 
latter parameter does not result in an improved estimation, hence the results are shown 
are relevant to same value used for DKF. It is apparently seen that, the estimates provided 
by AKF are severely affected by unobservability of the displacement as the filter fails to 
provide any estimate of it. The estimates furnished by GDF are also affected by a low 
frequency trend, which is attributed to the accumulation of the observation errors in the 
double integration. However, the DKF seems to appropriately cope with issues observed in 
AKF and GDF. 

The input force estimations by AKF, GDF and DKF are shown in Figure 4.The same 
trend observed in displacement time histories is seen in the force estimation as well.  



Figure 3: Displacement time history of the fourth floor estimated by the AKF (top), GDF (middle) and DKF 
(bottom) in the case of the unknown input 
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Figure 4: Input force time history of the fourth floor estimated by the AKF (top), GDF (middle) and the DKF 
(bottom) in the case of the unknown input (AKF) 

5. Conclusions and remarks 

In this paper, a dual implementation of the Kalman filter is proposed to estimate the 
unknown input and states of a linear state-space model. The effectiveness of the proposed 
filter is investigated through a pseudo-experimental tests. The proposed filter is confronted 
with the most recent methods applied to the problem. It is shown that, the successive 
structure of the suggested filter prevents numerical issues attributed to un-observability 
and rank deficiency, and the regulatory parameter for input estimation furnishes a tool to 
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avoid the so-called drift in the estimated input. By fine-tuning the regulatory parameters of 
the proposed technique, a reasonable estimate of the state and thus the fatigue damage 
could be accomplished. 
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