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ABSTRACT 
 

     Active tuned mass damper(ATMD) is a vibration control device, which consists of 
a mass, a spring and a damper supported on the primary vibrating structure. The 
performance of ATMD for suppressing wind-induced vibration of a tall building is 
investigated. Optimum parameters of a single passive tuned mass damper(PTMD) for 
minimizing the variance response of the damped primary structure under random loads 
were used for the optimum parameters of ATMD. The control force generated by the 
actuator of ATMD is estimated by linear quadratic regulator(LQR) controller. Fluctuating 
along-wind load treated as a stationary random process was simulated numerically 
using the along-wind load spectrum by Solari. Comparing the rms response of a tall 
building without ATMD, ATMD is effective in reducing the responses to 20 %~28% of 
the response without ATMD. Therefore, ATMD system is effective in reducing wind-
induced vibration of a tall building. 

1. INTRODUCTION 

Modern tall buildings are more slender and lighter with little natural frequency and 
damping ratio. These tall buildings are thus more sensitive to wind-induced vibrations. 
To mitigate the vibrations vibration control device is used.  
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The most common control device is the passive-tuned mass damper (PTMD), which 
consists of a mass, a spring and a damper tuning with the natural frequency of the 
primary vibrating system(Hartog 1956).The original idea of TMD is from Frahm in 1909, 
who invented vibration control device called a vibration absorber using  a spring 
supported mass without damper (Frahm 1909).Later Den Hartog derived optimum 
tuning frequency and damping ratio for the undamped primary structure under 
harmonic load(Hartog 1956)].  

 
While Den Hartog considered harmonic loading only Warburton and Ayroingde derived 
optimum parameters of PTMD for the undamped primary structure under random load 
(Ayoringde 1980). Krenk derived the optimum parameters of PTMD for the damped 
primary structure under the condition of the mass ratio is small and the primary 
structure’s damping ratio is less than that value of PTMD (Krenk 2008). And a number 
of PTMDs have been installed in tall buildings to suppress wind-induced vibrations of 
tall building(McNamara 1977,Housner 1997). However, at that times it was pointed out 
that the disadvantage of PTMD is its error in tuning the natural frequency of primary 
structure to that of PTMD and the size restriction of PTMD limits the vibration control 
effect(Wang 1999). 
 
In overcoming such problem of PTMD, an active-tuned mass damper(ATMD) was 
developed(Chang 1980). In ATMD, a feedback controller through the use of an actuator 
as an active control force and optimally tuned spring and damping device were 
incorporated. In 1980, Chang presented ATMD design using LQR controller for 
mitigating wind-induced vibrations of a tall building under the harmonic wind 
loading(Chang 1980).  
 
This was a first active control study for suppressing wind-induced vibrations of a tall 
building. Then many advanced studies for estimating optimal control force and 
suppressing wind-induced vibrations of a tall building have been developed based on 
the modern optimal control theory(Ankireddi 1996 1997, Ricciardelli 2003,Yang 2002 
2003 ). 
 
In this study, the performance of ATMD for suppressing wind-induced vibrations of a tall 
building is investigated. The control force generated by the actuator of ATMD is 
estimated by linear quadratic regulator(LQR) controller(Dorato 1995). Fluctuating 
along-wind load was simulated numerically using the along-wind load spectrum function 
by Solari(Shinozuka 1987,Solari 1993). Dynamic along-wind responses of a tall building 
with ATMD and without ATMD are estimated and compared their results. The controlled 
rms responses with ATMD is reduced about 20%~28% of the response without ATMD. 
Therefore, ATMD systems is effective in mitigating wind-induced vibrations of a tall 
building.  
 

 
2. EQUATIONS OF MOTION 
 

A tall building installed in ATMD at the top floor level with an active control force 
device such as an actuator is shown in Fig.1. The building is modeled in this figure as 



  

an equivalent single degree of freedom system with a generalized mass constant m1, 
generalized damping constant c1, and generalized stiffness constant k1, which 
corresponding to the first mode modal mass, damping , and stiffness of the building. 

 

 
Fig. 1: Building-ATMD system 

 
And md, cd, and kd represent the corresponding quantities of mass, damping, and 

stiffness constant of ATMD, and f(t) represents the along-wind load, and u(t) is an active 
control force. 

The linear dynamic equations of motion of the system can be written as 
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where r(t)=yd(t)-y1(t) is the displacement of md relative to that of m1.  
 
This equation can be written in terms of the state-space variable presentation as 

follows(Dorato 1995) 
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where   TryrytX 111)(   denotes  the state vector of the system with 
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is a system dynamic matrix  
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is a location vector of u(t) 
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is a location vector of f(t). 
 
 
3. OPTIMUM PARAMETERS OF PTMD 

 
Optimum parameters of PTMD for minimizing rms responses of the primary structure 

are mass ratio, tuning natural frequency ratio and damping ratio of PTMD to primary 
structure. While the basic concepts of how PTMD suppressing primary vibrating 
structures has been established, the optimum parameters of PTMD could be different  
for different primary structures and external loading conditions (Ayoringde 1980). 
Warburton investigated the optimum parameters of PTMD for minimizing the rms 
responses of the undamped primary structure under random loads(Warburton 
1981,1982). Krenk derived the optimum parameters of PTMD for minimizing the rms 
response of the damped primary structure under random loads under the condition that 
the mass ratio is small and the primary structure’s damping ratio is less than that value 
of PTMD (Krenk 2008) as follows 
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where, fopt= optimum tuning frequency ratio; ξopt= optimum damping ratio; μ=mass ratio. 

It was pointed out that tuning the natural frequency of PTMD to the fundamental natural 
frequency in the primary structure is more effective than tuning to different natural 
frequencies(Kareem 1995). 
Optimum parameters of ATMD for minimizing the rms responses of the main structure 
are similar to that for PTMD. 

 
 
4. LINEAR QUADRATIC REGULATOR CONTROLLER 
 

The LQR control method is a widely used modern optimal control technique in 
structural vibration control problems (Dorato 1995). In LQR control law, all continuous 
time state-space variables are available and linear dynamic equations of motion of the 
system can be written in terms of the state-space formulation as shown in Eq. (3). The 



  

external force term in Eq.(3) can be treated as a noise input hence Eq. (3) can be 
written as (Dorato 1995). 
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The object  of LQR control law is seek to find out a state-feedback  optimal control 
force u(t) that minimize the deterministic cost functional J maintaining the state close to 
the zero state. The cost functional J is given by 
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where Q is a positive semi-definite state weighting matrix and R is a positive definite 
control weighting matrix. where Q and R are positive semi-definite and positive definite 
weighting matrices. The term X(t)T QX(t) in Eq.(10) is a measure of control accuracy 
and the term U(t)TRu(t) is a measure of control effort. Minimizing J with keeping the 
system response and the control effort close to zero needs appropriate choice of the 
weighting matrices Q and R(Suhardjo 1992). If it is desirable that the system response 
be small , then large values for the elements of Q should be chosen with selecting the 
matrix Q to be diagonal and to make the diagonal element large value for any 
respective state variable to be small. If it wants the control energy be small, then large 
values of the elements of R should be chosen(Suhardjo 1992). 
 

The state-feedback optimal control force u(t) is derived as(Dorato 1995). 
 

u(t)= - KX(t)                               (11) 
 

where K=R-1BTP   
                          

 
In Eq. (11), K is called an optimal controller gain and P is the unique, symmetric, 
positive semi-definite solution to the algebraic Riccati equation(ARE) given by 
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Then the closed-loop system using the optimal control force u(t) becomes  
 

 X = (A-BK)X(t)  

                        = AcX(t)                                 (13)                                                                      

 
where Ac is the closed-loop system matrix 
In LQR control law, the cost functional J keep minimize means that larger value of state 
weighting matrix Q makes the state X(t) must be smaller, that is, the poles of the 
closed-loop system matrix Ac further left in the s-plane so that the state X(t) decays 
faster to zero. On the other hand larger value of control weighting matrix R makes the 
control force u(t) be smaller(Dorato1995). 

 
 



  

 5. NUMERICAL SIMULATION OF FLUCTUATING ALONG-WIND LOADS 
 

Fluctuating along-wind load treated as a random process of stationary Gaussian white 
noise can be simulated numerically in time domain using along-wind load power 
spectral density data .That is particularly useful fir some response estimation which are 
more or less narrow banded random process such as an along-wind response of a tall 
building. The numerical simulation procedure presented in this work is taken from 
Shinozuka (Shinozuka 1987). 
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where )( 1FS = the value of the spectral density of along-wind load corresponding to 

the first modal resonant frequency. 
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ωu = upper frequency of S(ω) 

 = lower frequency of S(ω) 

Φt = uniformly distributed random numbers between 0~2π 
N = number of random numbers 
 
The along-wind load power spectral density used in in equation (14) is that by G.Solari 

as follows[18] 
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Cx, Cz = lateral and vertical exponential decay coefficients 

Cy = cross-correlation coefficient of pressure acting on the windward and leeward face 

Lv(h) = integral length scale of turbulence at height h 

ρ = air density 

B = width of building 

H = height of building  

h = reference height of building 

CD = drag coefficient 

Cm, Ce = absolute values of mean pressure coefficients on windward and leeward face 

V = mean wind velocity 

σv = standard deviation of longitudinal turbulence 

n = frequency 

SF(n) = power spectrum of first fluctuating modal force 

 
 
6. NUMERICAL EXAMPLE 
 

This numerical example is from "Numerical Examples" in reference (Solari 1993). 

The tall building's height H=180 m, width B=60m, depth D=30m, first modal natural 

frequency n1=0.27Hz, critical damping ratio=0.015etc. h=120m, V(h)=40.96m/s, 

σv(h)=5.39m/s, Lv(h)=582.48m, Cx=16, Cz=10, Cw=0.8, Cℓ=0.5, Kb=0.5, etc Another data for 

along-wind load and properties of building were in (Solari 1993). The optimum 

parameters of ATMD were considered as the same value of PTMD. The optimum 

parameters of ATMD, with a different mass ratio μAP of ATMD to PTMD μAP=0.01, 0.03, 

0.05, 0.1, 0.3, 0.5, tuning frequency fopt=and damping ratio ξopt=0.05. 

The numerically simulated along-wind load and response without ATMD are shown in 

Fig.2 and Fig.3. The ms response without ATMD shown in Fig.3 is 0.0274, which is good 

approximation to that of Solari’s closed form response of 0.027m (Solari 1993). For 

estimating LQR controller , the weighting matrix Q and R are selected as  
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The controlled responses with ATMD with a different mass ratio μAP of ATMD to PTMD 

μAP=0.01,0.03,0.05,0.1,0.3,0.5 are presented in Fig.4~Fig.9.The controlled rms 

responses with ATMD are reduced to 20%~28% of the rms response without ATMD, 

which shows that ATMD is effective in mitigating wind-induced vibrations of a tall 

building. 
 
 

 
Fig.2 Fluctuating along-wind loads 

 

 
Fig.3 Along-wind responses without ATMD ( rms=0.0274) 

 

 
Fig.4 Along-wind responses with ATMD (μAP=0.01, rms=0.0222) 

 

 
Fig.5 Along-wind responses with ATMD (μAP=0.03, rms=0.0200) 

 



  

   
Fig.6 Along-wind responses with ATMD (μAP=0.05, rms=0.0196) 

 
Fig.7 Along-wind responses with ATMD (μAP=0.1, rms=0.0219) 

 

 
Fig.8 Along-wind responses with ATMD (μAP=0.3, rms=0.0210) 

 

 
Fig.9 Along-wind responses with ATMD (μAP=0.5, rms=0.0216) 

 
 



  

7. CONCLUSIONS 

 
The performance of ATMD for mitigating along-wind responses of a tall building is 

investigate. Optimal control force generated by actuator of ATMD is estimated by LQR 
controller Fluctuating along-wind load is simulated numerically using along-wind load 
spectra by Solari. The rms responses with ATMD are reduced to 20%~28% of the rms 
response without ATMD. Therefore, ATMD system is effective in mitigating wind-
induced vibration of a tall building. 
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