
 
 
 

Copula Model for Multi-Dimensional Extreme Wind Speed Analysis 
 

*Jingcheng Wang1), Yong Quan2), Ming Gu3), Peng Huang4) and Xuanyi 
Zhou5) 

1), 2), 3), 4), 5) State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji 
University, Shanghai 200092, China. 

1)wangjingchengxx@163.com 
 
 
 

ABSTRACT 
 

     Some previous researchers built the multi-dimensional extreme wind speed 

probability distribution functionswith the copula theory. Their methods are based on 
Gaussian-copula model or fully-nested Gumbel-copula model for 16 dimensions.These 
copula models were checked with the wind speed data from meteorological station and 
a parametric bootstrap test based on the empirical copulain present paper. The fully-
nested Gumbel-copula is rejected in some cases when its 2nd deepest nested variates 
were checked by this bootstrap test.The reason about this phenomenon was discussed 
and then t-copula model was proposed. 

 
1. INTRODUCTION 
 
     The importance of considering the effect of wind directionality on probabilistical 
estimationof wind load effects of structures has beenwell recognized(Zhang and 
Chen,2015). Some previous researchers (Simiuet al.,1985; Kanda and Itoi,2001; Itoi 
and Kanda,2002; Zhang and Chen,2015,2016) analyzed the correlation of extreme 
wind speed between different sectors with copula theory, in which the joint distribution 
model of multi-directional extreme wind speed estimation problem is regarded as the 
probability distribution of multi-dimensional random process.The problem then can be 

decomposed into two aspects base on Sklar theorem(Sklar，1959). First aspect is the 

estimation problem of one-dimensional marginal cumulative distribution functionin each 
sector. Second aspect is the estimate problem of copula model to consider the 
correlation of extreme wind speeds between different sectors. The problem of second 
aspect was discussed in present paper.  
     In research on the correlation of extreme wind speeds between different sectors, 
the copula models used by previous researchers are two-dimensional Gumbel-
copula(Simiuet al.,1985), Partially Nested Gumbel-copula(Kanda and Itoi,2001), Fully 
Nested Gumbel-copula(Itoi and Kanda,2002) and Gaussian-copula(Zhang and 
Chen,2015). Nikoloulopouloset et al.(2009) indicated that the t-copulas are generally 
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superior to the Gaussian-copulas in the context of modeling multivariate financial return 
data. t-copula model perform well in multi-dimensional data analysis, therefore t-copula 
model was proposed to use to consider the correlation of extreme wind speeds 
between different sectors in present paper.  
     Because different copula model has different property, whether the copula model, 
which is fitted with observed data, can reflect the property of the observed data should 
be checked. The checked result also can be used to judged which model is fitted better 
with observed data. In the research area of probabilistic wind load, Gaussian-copula 
and Gumbel-copula was expanded to 16-dimensional by Zhang and Chen(2016) for 
current 16 wind directions system. Therefore Gaussian-copula, Gumbel-copula and t-
copula were chosen to execute the hypothesis checking.  
 
2. PARAMETIC BOOTSTRAP TEST BASED ON THE EMPIRICAL COPULA 
 
     2.1 fitting method of copula models  
     The recursion formula of the cumulative distribution function of the M-dimensional 
Fully Nested Gumbel-Copula is flowings:  
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where M is the number of the wind directions, which is set as 16 generally. ip is the one-

dimensional marginal cumulative distribution function in each sector.  
     The cumulative distribution function of the M-dimensional Gaussian-Copula is: 
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where 
1  is the inverse function of the one-dimensional standard normal distribution, 

[ ]G   is M-dimensional normal distribution with mean 0 and covariance matrix[ ] .  

     The cumulative distribution function of the M-dimensional t-Copula is: 
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where 1tk

  is the inverse function of the one-dimensional standard t distribution, 
[ ],t k is 

M-dimensional t distribution with the non-centrality parameter 0, correlation matrix   

and k degrees of freedom.  

     Although the formula of copula model is complex, many matical softwares (such 
as MATLAB) have the built-in functions to estimate the parameters of each copula 
model conveniently.  

     There are several method to fitting copula model(王丽芳 , 2012), maximum 

likelihood method(MLE), the method of inference functions for margins(IFM)(Xu, 1996), 

pseudo maximum likelihood estimator(PMLE)（Kim et al.,2007). The research result of 

Kim et al.(2007) indicated that PMLE is better than IFM and MLE in most cases. 
Therefore PMLE was proposed to estimate the parameters of each copula model, 

i.e.firstly, the no-exceedanced probabilities [ ]p  are estimated by observed extreme 

wind speeds [ ]V  based on empirical distribution in each wind direction, and then the 

parameters of copula function are estimated by maximum likelihood method.  
 



     2.2introduction of empirical copula distribution(Genest et al., 2009) 

     Marginal cumulative distribution probability values [ ]p are estimated by observed 

extreme wind speeds [ ]V  in each wind direction, where 
jip  is the no-exceedanced 

probability of the j th observed extreme wind speed in the i
th wind direction. M is set 

as the number of wind directions and N is the number of observed sample points, the 

cumulative distribution function of empirical copula at any one point 1( ,..., )Mp p p  is:  
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Where 1,..., [0,1]Mp p  ,    are indicative functions, i.e.if 
1 1,...,j jM Mp p p p  ,   1   ; 

else   0   .  

 
     2.3step of the test 
     Genest et al. (2009)summarized the testing methods of copula models completely 
and compared these methods with each other. The parametric bootstrap test based on 
the empirical copula has less intricate form and is more easy to understand. It also has 
good effect in application, so it was proposed to test t-copula, Gaussian-copula and 

Fully Nested Gumbel-copulain in present paper. Cramer–von Mises statistics nS
 
was 

selected as inspected value. 

     
 

N M
V


are the observed n-day maxima of wind speeds in all wind directions, 

where M is the number of the wind directions, N is the number of observed sample 
points, the step of the parametric bootstrap test based on the empirical copula is 
flowings (Genest et al., 2009; Genest and Rémillard, 2008):  

1） Let 0i   and then the no-exceedanced probabilities  i N M
p


 of all extreme 

wind speeds are estimated with 
N M

V


.  

2） Calculate the empirical joint cumulative distribution function values 
0, ( )iC p with 
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p


based on the cumulative distribution function of empirical copula(Eq. 4). 

3） Fit copula model (t-copula model, Gaussian-copula model or Fully Nested 

Gumbel-copula model) with  i N M
p


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4） Calculate Cramer–von Mises statistics 
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5） Generate N random M-dimensional number using function 
, ( )iC p .Let 1i i 

and name the generated random numbers i N M
p


.The number of generated 

samples N should be equal to the number of observed sample points. Return to 
step 2) and repeat this circulationfrom step 2) to 5)K(K usually is several hundreds 

or one thousand) times and record 
,n iS
 
for every step. 

6） Calculate the P -value approximately: 
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7） If 0valueP P , reject the Original hypothesis, where 0P
 
is significance level, 

which is set as 0.05 usually. 
     When the correlation between variates is weak, the probability of rejecting wrong 

Original hypothesis is very low by the bootstrap test(Genest et al.，2009). In the t-

copula and Gaussian-copula model, it can be proved that the parameter
ij  in the ith  

row- jth column of coefficient matrix    is equal to the parameter
ij  of the ith jth

two-dimensional marginal cumulative distribution function. Therefore, when the t-copula 
and Gaussian-copula model are tested, just all of the two-dimensional marginal 
cumulative distributions of the adjacent wind direction should be checked (the 
correlation of wind speed is stronger). When the Fully Nested Gumbel-copula model is 
checked, the model should be checked according to the nested sequence.  
 
3. CONCLUSIONS 
 
     The directional Surface Hourly observation data of wind speed used in this study 
was recorded by fixed-weather-station 034820 at Marham, United Kingdomfrom gotten 
from the database of National Oceanic and Atmospheric Administration(NOAA). The 
wind speed data from January 1st, 1973 to July 31st, 2015 are selected as observed 
samples to test copula models. The unit of wind speed is m/s and the resolution of wind 

speed is 0.1. The resolution of wind direction is 1°and these directional wind speeds 

are partitioned into 16 directional sectors. The monthly maximum of wind speed data 

for each month at each directional sector(as  
N M

V


) were used to fit the copula 

model(Zhang and Chen, 2015,2016).   
     The Gumbel-Copula model is nested in the order of dominance direction(Zhang 

and Chen, 2016; Itoi and Kanda, 2002). When significance level 0P  is set as 0.05，in 

present test, the Fully Nested Gumbel-Copula model was rejected at the 2nd  deepest 
of the nested structure.  

 
 

Fig. 1Frequency histogram of the 2nddeepest nested variates(left) and 
Fitted probability densityof the 2nddeepest nested variates(right) 

 



     In order to discuss the reason of this phenomenon, Fig. 1(left) shows the 
frequency histogram of variables in the second deepest of the Fully Nested Gumbel-
Copula model.It can be treated as the probability density graphic of empirical copula 
distribution. Fig. 1(right) shows the probability density graphic of the Gumbel-copula 
which is fitted by variables in the second deepest of the nested structure. Obviously, 
the trend of the two figures is different, Fig. 1(left) has obvious lower tail, but in Fig. 
1(right), the upper tail of the probability density graphic of the fitted Gumbel-Copula is 
very tall, it is much higher than the lower tail. The Fig. 1(left) and Fig. 1(right) cannot 
match well, it is induced that the Fully Nested Gumbel-Copulamodel is rejected at the 
2nd deepest of the nested structure. 

     Set the significance level 0 0.05P  . When the t-copula and Gaussian-copula 

model were tested, all of the two-dimensional marginal cumulative distributions of the 
adjacent wind directions passed the parametric bootstrap test based on the empirical 
copula. But the experiment result of Genest et al. (2009) showed that the efficacy of all 
the test methods are limited. When the number of sample points is small, the test 
cannot reject wrong original hypothesis or accept right original hypothesis strictly. In the 
experiment of Genest et al. (2009), 150 samples were generated to test, the K  in step 
6) is 1000, the parametric bootstrap test based on the empirical copula was repeated 
10000 times. The probability of reject the right original hypothesis(when the samples is 
generated from the same distribution of the original hypothesis) is no greater than 5% 
when the t-copula and Gaussian-copula were tested.  
Because the experiment of Genest et al. (2009) is time-consuming, a simple 
experiment was made to test the model more strictly by compared with the experiment 
result of Genest et al. (2009). The step of the simple experiment is similar to Genest et 
al. (2009), but the times of repetition is reduced to 100 times, the K  in step 6) is 

reduced to 100 in each time. If the probability of 0valueP P  is larger (greater than 5%), 

the original hypothesisis rejected.  

 

 
Table1 when the original hypothesis is t-copula or Gaussian-copula,  

the probability of reject the original hypothesis in the simple experiment. 
 

风向 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

风向 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

t-copula 0.04 0.02 0.04 0.05 0.05 0.02 0.01 0.03 0.03 0.02 0.02 0.02 0.05 0.03 0.03 0.02

Gauss ian-

copula

0.07 0.07 0.06 0.03 0.05 0.04 0.06 0.03 0.02 0.04 0.01 0.04 0.01 0.04 0.03 0.08

 
 
     When the original hypothesis is t-copula, the probability of reject the original 
hypothesis is no greater than 5% in every adjacent wind directions, then the original 
hypothesisis accepted. When the original hypothesis is Gaussian-copula, the 
probability of rejecting the original hypothesis is greater than 5% in some adjacent wind 
directions. In the results of simple experiment, t-copula is much harder to be rejected 
and fitted better with the observed wind speed data than Gaussian-copula.  
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