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ABSTRACT 
 
     The extreme value of wind pressure is very important for the design of cladding 
and glass curtain wall. For estimating the extreme values of non-Gaussian wind 
pressure processes, a novel approach integrated with the Hermite polynomial model 
and Bayesian method is proposed. The Hermite polynomial model is used to formulate 
the PDF of stationary non-Gaussian processes. Due to the randomness of 
aerodynamic effect and the incomplete ergodicity of collected data, the statistics of 
wind pressure samples always exhibit random properties, which violate the assumption 
of constants. In order to consider these intrinsic random properties, the parameters 
involved in Hermite polynomial model are estimated by Bayesian method, in which they 
are considered as random variables. Moreover, the empirical knowledge and the 
sampled information are integrated, and the final prediction of extreme wind pressure 
can be more reasonable. The efficacy of the newly-proposed approach is 
comprehensively demonstrated and verified by comparing its estimations with the 
directly observed data in long-duration wind tunnel tests. 
 
1. INTRODUCTION 

 
Wind pressures on surface of buildings usually show nonGaussianity. A large 

amount of non-Gaussian wind pressure data were recorded from wind tunnel tests and 
in-situ measurements (Kasperski 2003; Holmes and Cochran 2003; Li and Hu 2015). 
Establishing a reasonable model for describing the parent non-Gaussian distribution is 
a key step for further estimation of the non-Gaussian extrema. Plenty of researches 
have been done to explore appropriate probabilistic models for non-Gaussian 
distribution (Masters and Gurley 2003; Gurley et al. 1997), and to propose accurate 
approaches to determine the extreme values of stationary non-Gaussian processes 
(Huang et al. 2014; Ding and Chen 2015). 

 
Hermite polynomial model (HPM) is the most widely-applied transformation 
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formula between a non-Gaussian process and its underlying Gaussian pair (Winterstein 
1985), it used the three-order Hermite polynomials to approximate the transformation 
relationship. Besides, HPM can also be used as probabilistic model for non-Gaussian 
distribution. Two shape parameters are required to be estimated to make the model 
work. The method of moment (MM) (Winterstein et al. 1994; Gurley et al. 1997; Yang et 
al. 2013) is a well-recognized approach to estimate the two shape parameters. Based 
on MM, several series of formulas for approximating the shape parameters were 
suggested (Winterstein 1988; Winterstein and Kashef 2000; Yang et al. 2013). 
Moreover, the HPM-based techniques for estimating the peak factor and extrema CDF 
of non-Gaussian processes were also discussed in many studies (Kareem and Zhao 
1994; Kwon and Kareem 2011; Ding and Chen 2015). 

 
Usually, the design wind pressure is determined on the basis of short-term (e.g., 

< 30 s) simultaneous pressure measurements on a scale model in a wind tunnel test. 
Due to the randomness of aerodynamic effect and the incomplete ergodicity of 
collected data, the statistics of the short-term wind pressure samples always exhibit 
random properties. In other words, the basic assumption of MM that the statistics are 
constants is not strictly valid. For parameter estimations, the Bayesian method can help 
provide more accurate resolutions. The parameters are regarded as random variables 
in Bayesian method, which is in accordance with the actual situation reflected by 
sampled data. Besides, the empirical knowledge of researchers and the sampled 
information are integrated in Bayesian method, by which the further prediction of wind 
pressure extrema can be more reasonable. 

 
In this study, a ramification of Bayesian method which is integrated the features of 

MM and the method of maximum likelihood is proposed. The parent non-Gaussian 
distributions are respectively fitted by two HPMs those obtained from the novel method 
and from conventional method, and the extrema distribution is also further estimated. 
The fitting goodness is verified  by comparing with the long-duration pressure records 
measured on a rigid model surface in a wind tunnel test, by which the applicability and 
accuracy of the newly-proposed method will be comprehensively validated. 
 
2. HERMITE POLYNOMIAL MODEL 
 

TheHPM is a widely-applied method for bidirectional transformation between a 
standardized Gaussian variable and a standardized non-Gaussian variable. This 
method is based on the expansion of the non-Gaussian variable in terms of Hermite 
polynomials involving a standard Gaussian process (Winterstein 1985). This 

transformation is valid for a non-Gaussian process  x t  that can be expressed in 

terms of a standard Gaussian process  u t  through a monotonic function. For a 

softening process, whose skewness (
3 ) and kurtosis (

4 ) meets  
2

4 33 1.25    

(Winterstein and MacKenzie 2011), the HPM is briefly introduced here 
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where 

3h  and 
4h  are two shape parameters. Based on HPM, the PDF of a 

standardized process  x t  can be expressed as (Grigoriu 1984) 
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Assume Eq. (1b) is differentiable, the derivative du dx  is analytically derived as 
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It is obvious that the PDF of  x t , i.e., Eqs. (2), only depends on 
3h  and 

4h , 

which can be seen as the shape parameters of the non-Gaussian distribution. For 
determining 

3h  and 
4h , the MM was often utilized. In addition, on the basis of optimal 

results that minimize the fit errors for skewness and kurtosis of the HPM, Winterstein et 
al. (1994) proposed simple expressions for shape parameters 

3h  and 
4h . These 

expressions are intended for application in the ranges of 
40 15  ; 2

3 41.5 3   , which 

may include most cases of practical interests (Winterstein and Kashef 2000). 
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It is noted that the MM has its specific strengths and weaknesses. MM endows 

the data in the tail area with more weights compared with the data in bulk. Therefore, 
the estimated PDF by the MM fits the tails relatively better than the bulk. However, only 
the third- and fourth-moment may be insufficient to capture the probabilistic feature of 
tail areas, and usually results in an overestimation of the extrema (Ishikawa 2004). A 
Bayesian method combined the features of the MM and the method of maximum 
likelihood will be discussed in next section to solve this challenging issue. 

 



3. BAYESIAN METHOD for PARAMETERS ESTIMATION of HPM 
 

3.1 Fundamental idea 
According to Bayesian theory, the distribution parameters are supposed as 

random variables, rather than constants. The parameters are distributed as another 
PDFs (prior distributions). If some data are sampled, a conditional PDF can be 
identified based on the prior experience and the new sampled information. The 
posterior PDF can be further expressed in a Bayesian manner as:  
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where     and  x   are the prior and posterior distributions of the model 

parameters;  f x   is the likelihood function (conditional probability); the symbol   

means be proportional to;   is a continuous parameter vector and x  is sample data. 
 

3.3 Prior distribution 

According to the study of Yang and Tian (2015), the shape parameters 
3h  and 

4h  in HPM are approximately distributed as Gaussian type, when the HPM is used to 

describe the probability distribution of long-duration wind pressure. For computational 
simplicity, the prior joint PDF of 

3h  and 
4h  is assumed as a 2-dimensional Gaussian 

PDF. And this approximation error would be remedied by the sampling information. 
Specifically, the covariance matrix of 

3h  and 
4h  is assumed as 

2 20.02 ,0.8 0.02 0.005;0.8 0.02 0.005,0.005       for positive 
3  , and 

2 20.02 , 0.8 0.02 0.005; 0.8 0.02 0.005,0.005         for a negative 
3 . The expected value of 

3h  and 
4h  are obtained based on the MM by substituting 

3  and 
4  of sampled data 

into Eq. (4). Therefore, the prior PDF of shape parameters is related to the estimations 
of MM. In other words, it united the empirical and the analytical elements. 
 

3.4 Posterior distribution 

The conditional probability  f x   of the sampled data can be calculated as 
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where  if x  is formulated by Eq. (2); 
ix  is the thi  data of all n  samples. Namely, 

 f x   is the likelihood function of sampled data, which endows the Bayesian 

estimation with the property of the method of maximum likelihood. After the posterior 

distribution  x   is determined, the expected value of  x   can be calculated as 

the final result of Bayesian estimation. Although it is difficult to calculate the 



denominator and the analytical expression of numerator in Eq. (5), the Metropolis-
Hastings sampling method (MHSM) (Metropolis et al. 1953) can be used to solve the 
issue. 
 

3.5 Implementation of the MHSM 
The MH sampling method is based on the Markov chain Monte Carlo (MCMC) 

methodology, which is a general computational approach that replaces the analytical 
integration of complex or high-dimensional distributions. The goal of MCMC is to design 
a Markov chain such that the stationary distribution of the chain is exactly the 
distribution that is desired to sample from (Metropolis et al. 1953). The MHSM is one of 
the algorithms that developed from the MCMC, based on which samples can be 
generated from the complicated posterior joint PDF, e.g., Eq. (5). Two essences are 

included in the MHSM, one is to generate a candidate point    by using a proposal 

distribution  1tq    . Another one is to either accept the proposal as t  or reject it. 

For sampling from Eq. (5), the specific sampling procedure is listed as follows: 
 

a) Set t = 1; 
 

b) Calculate the initial value of  3 4,H h h  by Eq. (4), and set 0 H  ; 
 
c) Repeat 
 

t = t + 1 
 

Generate a proposal    from  1tq    ; 

Evaluate the acceptance probability 
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; 

Generate a   from a Uniform(0,1) distribution; 

 

If   , accept the proposal and set t   , else set 1t t   ; 

 
d) Until t attains the desired number of samples. 
 
     The average of the samples of 

3h  and 
4h  can be considered as the final results 

of Bayesian estimation. More details of the MH sampling can be referred to Hastings 
(1970).  
 

Once the shape parameters 
3h  and 

4h  are determined, the non-Gaussian wind 

pressure records can be modeled by HPM. Then the probability distribution of extreme 
wind pressure and the peak factor can be easily obtained as recommended by Kwon 
and Kareem (2011). 
 



4. DATA RESOURCE 
 

Wind pressures on the surfaces of the rigid model of a tall building were 
measured for a long time in the boundary layer wind tunnel at Dalian University of 
Technology, China. The working section of the wind tunnel laboratory is 3 m in width, 
2.5 m in height, and 18 m in length. Spires and roughness cube elements were used to 
generate the desired boundary layer wind profile. A boundary layer corresponding to 
the urban terrain (Category C) in Chinese code GB50009-2012 (National Standard of 
the People’s Republic of China, 2012) was simulated. 
 

   

Fig. 1 Arrangement of pressure taps      Fig. 2 A picture of the wind tunnel test  
and wind directions 

 
The tests were conducted on a 54 cm high rigid model with a length scale of 1: 

200. The velocity scale was set as 1: 4, and the corresponding time scale was 1: 50. 
The plane layout of Taps 1-20 and a picture of the test are respectively shown in Fig. 1 
and Fig. 2. The sixty taps on the three layers, i.e., at the height of 23, 35, and 46cm, 
were numbered as 1-20, 21-40, and 41-60, respectively. At a sampling frequency of 

312.5 Hz, a long time history of 20 min was recorded in 0  wind direction as shown in 
Fig. 1. Correspondingly, the time duration for full-scale measurement was 1000 min, i.e., 
100 repeats of 10-min standard time intervals. 
 
5. COMPARISON of FITTING GOODNESS for NON-GAUSSIAN DISTRIBUTION 
 

In this section, the Bayesian-based HPM and the MM-based HPM will be applied 
to model the wind pressure records, and their fitting performance will be compared. 
Two taps, i.e., No. 1 and No. 7 are taken as the computational examples. The long-
duration time histories are divided into 100 segments with 10-min standard time 
intervals. The skewness and kurtosis of the total 200 segments of two taps are dotted 
in Fig. 3. 

 
Due to the randomness of aerodynamic effect and the incomplete ergodicity of 

collected data, the statistics of short segments exhibit random properties as shown in 
Fig. 3, which violates the assumption of constants. However, for the MM, e.g., in Eq. (4), 



the 
3  and 

4  are considered as the constants which are equal to the skewness and 

kurtosis of the samples. Substitute these 
3  and 

4  into Eq. (4), the calculation 

results of 
3h  and 

4h   are dotted in Fig. 4. It is obvious that the shape parameters of 

HPM also show the random characteristics. 
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Fig. 3 Skewness and kurtosis of wind pressures  Fig. 4 
3h  and 

4h  for two taps 

 

The variance of the statistical moments becomes lower when the length of the 
segments increases. Only if the length of segments were assigned long enough, the 
statistical moments could be approximated as constants. Nevertheless, the wind tunnel 
tests and field measurements are always kept for a quite short time, e.g., less than 
1min for wind tunnel tests, which probably leads to the skewness and kurtosis of the 
sample deviate farther away from their expected values. It also affect the estimation 
accuracy of  the shape parameters 

3h  and 
4h . In Bayesian method, 

3h  and 
4h  are 

considered as variables, and the probable errors caused by the randomness of 
sampled data can be theoretically reduced. The following discussion is conducted on 
the basis of the assumption that only the first 1min, i.e., the five segments are in hand. 
The standardized time histories of the first five segments at the two taps are plotted in 
Fig. 5, and their skewness and kurtosis are also listed. 
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Fig. 5 Time histories of wind pressure at two taps: (a) Tap 1; (b) Tap 7 

 
Two sets of shape parameters in HPM are respectively calculated by Eq. (4) and 

the proposed Bayesian method. The corresponding PDF curves are plotted in Fig. 6. 
The real target of the utilization of HPM is to predict the long-term probabilistic 
characteristics by using the short-term sampled data in hand. Therefore, the histograms 
of the total 100 segments are also shown in Fig. 6 as the benchmark reference for 
assessing the fitting goodness. The skewness and kurtosis of the entire sampled data 
is -1.08 and 6.16 for Tap 1, -1.14 and 5.80 for Tap 7, respectively. The third- and 
fourth- moments of the short-term data for Tap 7 are very close to the statistics of the 
entire data. However, the corresponding pairs deviates far from each other for Tap 1. 
Therefore, the MM-based HPM fits the histogram of Tap. 7 quite well in the bulk, due to 
the statistics of short-term data for Tap. 7 in hand is close to the long-term data 
coincidentally. But it lose accuracy for Tap. 1, because of the big difference between 
the statistics of short-term data in hand and the long-term data. By comparison, the 
Bayesian-based HPM offered both taps outstanding fit in the mean region. For further 
exploring the fitting performance of two methods for the tails area, the semi-log scales 
comparisons of PDF are shown in Fig. 7. 

 

 
(a)                                     (b) 

Fig. 6 Comparisons of fitted PDFs (a) Tap 1; (b) Tap 7 

 
The comparative results in tail areas are similar to those in the mean region. The 

Bayesian-based HPM did much better than the MM-based HPM for Tap 1 on both long-
tail and short-tail side. 

 



 
(a)                                     (b) 

Fig. 7 Comparisons of fitted PDFs in semi-log scale (a) Tap. 1; (b) Tap. 7 

 
6. Estimation of Wind Pressure Extrema 
 

After the parent non-Gaussian distribution is fitted by the HPM, the CDF of the 
non-Gaussian extrema can be estimated (Kwon and Kareem 2011). Due to the 
extrema on the long-tail side of the non-Gaussian distribution are relatively larger than 
those on the short-tail side, the extrema on long-tail side is usually of more interest for 
structure design. Accordingly, the estimated CDFs of extrema on the long-tail side from 
two methods are plotted in Fig. 8. The empirical CDF of the minimum values from 100 
segments are also plotted in Fig. 8 as the standard value for comparison. Meanwhile, 
the lower and the upper confidence bounds (LCB and UCB) at the confidence level of 
95% are also calculated and marked. For Tap. 7, both methods matches the empirical 
CDF well. The derived extrema CDFs is located between the LCB and the UCB. The 
good performance is beneficial from the high-level fitting of the parent distribution as 
shown in Fig. 7b. However, there is an obvious gap between the matching goodness of 
two methods for Tap 1. The estimation from MM-based HPM lost its accuracy, but the 
estimation from Bayesian-based HPM still matches the empirical CDF outstandingly, by 
which the accuracy of the Bayesian-based method is convincingly demonstrated. 

 
A further discussion is conducted by integrating the Fig. 7 and 8. The accurate 

estimation of the probabilistic properties of the extrema requires accurate fitting of the 
parent distribution. However, if the sampled data in hand is not long enough, their 
statistics cannot be regarded as constants. Once they are considered as constants, for 
instance in the method of moment and the method of maximum likelihood, the fitting 
accuracy of parent distribution cannot be guaranteed. 



 
(a)                                     (b) 

Fig. 8 Comparisons of extrema CDF on the long-tail side: (a) Tap 1; (b) Tap 7 

 
7. Concluding Remarks 
 

In this study, a Bayesian-based method is proposed to calculate the shape 
parameters of the Hermite polynomial model (HPM). Based on the long-duration wind 
pressure records on the surfaces of a high-rise building model in wind tunnel tests, the 
parent non-Gaussian distributions at two Taps were fitted by the Bayesian method and 
the conventional method (method of moment). The fitting goodness of the two methods 
is comprehensively compared and analyzed. Compared with conventional method, the 
Bayesian-based method has a better fitting performance of non-Gaussian distribution in 
both bulk and tail regions. The estimation accuracy of the extrema CDF by the new 
method is also fully verified by comparing with the conventional method and the directly 
observed results. 
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