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ABSTRACT

We study the formation of membrane budding in model lipid bilayers with the
budding assumed to be driven by means of diffusion of trans-membrane proteins over a
composite membrane surface. The theoretical model for the lipid membrane
incorporates a modified Helfrich-type formulation as a special case. In addition, a
spontaneous curvature is introduced into the model in order to accommodate the effect
of the non-uniformly distributed proteins in the bending response of the membrane.
Further, we discuss the effects of line tension on the budding of the membrane, and the
necessary adjustments to the boundary conditions. The resulting shape equation is
solved numerically for the parametric representation of the surface which has one to
one correspondence to the membrane surface in consideration. Our numerical results
successfully predict the vesicle formation phenomenon on a flat lipid membrane surface,
since the present analysis is not restricted to the conventional Monge representation
often adopted to the problems of these kind for the obvious computational simplicity,
despite it’s limited capability on describing the deformed configuration of membranes.
In addition, we show that line tension at the interface of the protein concentrated
domain makes a significant contribution to the budding formation of membranes.

1. INTRODUCTION

Helfrich energy potential (also often referred as Helfrich model (Helfrich 1973))
based on 2D liquid crystal theory has become one of the most influential models in lipid
membrane study for their simplicity and applicability. The fundamental premise of the
model is that the lipid membrane can be regarded as an ideally thin film so that the
stored energy during the membrane deformations is compatible to the change of
curvatures of the membrane. Despite of the extensive use of the model, it’s application
to the actual predictions of the membranes’ responses (morphological transitions, in
particular) are limited to the relatively simple deformations of the membrane (e.g.
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substrate interaction and boundary excitations). This is mainly attributed by the fact that
Helfrich model accounts only the variations of Mean and Gaussian curvatures. In
addition the adopted surface representation is limited to the normal deformation of
membranes (Monge representation) for the obvious simplicity in the corresponding
analysis.

In the present study, motivated by the work in (Agrawal 2011), we present
modified local form of the Helfrich energy-type formulation that can predict highly
complex behaviors of membranes such as budding and vesicle formations. The
modified model is capable of reflecting the effect of protein diffusion and local curvature
change of the membrane. A spontaneous curvature description is introduced into the
model in order to accommodate the effect of the non-uniformly distributed proteins in
the bending response of the membrane. In particular, the description of the shape
equation is based on a parametric representation of the surface (not limited within the
Monge representation) and hence applicable for general membrane geometries. The
proposed model successfully predicts the vesicle formation phenomenon on a flat lipid
membrane surface. We also demonstrate that the corresponding deformations are
energetically favourable and therefore stable.

2. VARIATIONAL FORMULATION

The present model is the extension of the model in (Agrawal 2011) accounting for
the diffusion of trans-membrane proteins domain on the membrane surface and the line
tension on the boundary of interest. Within which, the areal energy density distribution
of the lipid membrane can be claimed as a natural extension of the Helfrich energy
(Helfrich 1973) potential and is necessarily assumed of the form

�(�,�,�;��) = �(�) + �(�)[� − �(�)]� + ��(�)�, (1)

where �(��, �) is the areal concentration of proteins on the membrane surface and
�(�) and ��(�) are bending rigidity pertaining to non-uniform properties of the limpid
membrane. � and � are well know mean and Gaussian curvatures of surfaces given
by

� =
�

�
(�� + ��), � = �� − 	�� − �� (2)

where � and � = � × � refer to the exterior unit normal and unit tangent to a
differentiable surface boundary ��. �� and �� are the normal curvatures and � is the
corresponding twist. The space parametric vector �(��) has one to one
correspondence to the membrane surface. Here �� = �,� forms natural basis of
curvilinear coordinate inducing the surface matric ��� = �� ∙ �� and dual matric

components ���. The local curvature of the membrane is then given by (Sokolnikoff
(1951) � = ����

�⊗ ��, where ��� = � ∙ ��� is the coefficient of second fundamental

form with � = (�� × ��/|�� × ��| is the local surface normal. Lastly, Greek indices
take the value 1 and 2. The contravariant cofactor of the curvature is then defined by



���� = 2���� − ��� (3)

where ��� is the inverse of ���. In the present study, the spontaneous curvature �(�)

is introduced to accommodate the effects of non-uniformly distributed proteins on the
corresponding membrane field. A simple expression of �(�) ensuring bilayer symmetry
in the absence of protein is given by (Agrawal 2011) �(�) = (��)�, where �� is a
constant of proportionality. Here � is a positive constant and � is the angle induced by
the meridian of the cone with local surface normal �. Consequently, the total potential
energy of the deformed surface can be expressed as

� = ∫ �(�,�,�;��)
�

�� + ∫ �
��

��, (4)

where � is the acting line tension per unit length. To accommodate incompressibility,
we consider the following augmented energy functional (Agrawal and Steigmann (2009))

�∗ = ∫ �[�(�,�,�;��) − �(� − 1)]
�

�� + ∫ �
��

��, ∵ ��� = ��, (5)

where �(��) is a Lagrange-multiplier field. � is the local areal stretch from a fixed

reference (�) to the deformed surface (�) defined as		� = ��/� .

Here � and � are the corresponding areas of � and �, respectively.
The equilibrium state of the membrane can be derived through the variation of the

energy. To compute energy variation, it is necessary to evaluate the variational
derivatives of �,� and � induced by the virtual displacement �(��) = �̇.
Here superscript “ ∙ ” is small deformations (virtual displacements) of the membrane
which here simply indicated by the derivative with respect to a parameter � (e.g.
(∗̇) = ∂(∗)/ ∂�). In addition, the dot notation states the derivatives at a fixed value of
parameter associated with the particular equilibrium state considered (here we set

� = 0). Therefore, �(��) =
�

��
�(��; ��)|���. The same meaning applies to any variables

bearing a superposed dot (�̇ =
�

��
�(��; ��)|���, ���…).

In order to evaluate total energy variation of membranes, it is essential to account both
tangential and normal variations �� and �. This can be done by decomposing the
virtual displacement into the normal and tangential components as � = ���� + ��.

Thus, the induced energy variation is obtained by

�

��
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where
���̇ + ���̇ + ���̇. (7)

The explicit formulas for the variational derivatives of � and � are given in
(Steigmann 2003). Therefore the corresponding shape equation can be obtained as

�∆(� − �) + 2�(� − �)(2�� − �) − 2�[(��−�)� + �(� − �)�] − 2�� = �, (8)
and the corresponding Lagrange multiplier ca be written as

∇� = 2�[���(� − �) − �(�� − �)∇σ. (9)



The associated boundary conditions are also given by

� = �(� − �), �� = (�� − �)� + � − ��� + ���, (10)

and
�� = ��,�� = (��)� −�,� + �,��. (11)

Due to the space limitation, we intentionally omit discussions regarding protein diffusion
and parametric surface representation. Eqs (10-14) are highly nonlinear coupled two-
point boundary valued Partial Differential Equations (PDEs) in nature. The solution can
be obtained numerically using commercial packages (e.g. Matlab, COMSOL etc...).

Fig. 1 Sequence of the budding formations (A, B) / (C, D) budding of sh1∆ mutant cell

3. CONCLUSIONS

We proposed a continuum based model describing budding formation of lipid
membranes induced by the surface diffusion of proteins and acting line tension on the
membrane. The proposed model successfully predicts budding and vesicle formation of
membranes when necessary boundary conditions are applied. We also found that a
sufficient amount of line tension is a dominant factor for the membrane in forming
budding and/or vesicle.
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