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ABSTRACT

Zinc oxide (ZnO) have gained much interest since last decade to achieve desired
optical and structural properties for various applications. ZnO has wide direct band gap
(~3.37 eV), large exciton binding energy (~60 MeV), it is chemically stable, non-toxic
and biocompatible along with abundance availability in nature. ZnO nanorods are
grown on glass substrate by chemical bath deposition method. Effect of reactants
concentration and reaction time on growth and morphology of ZnO nanorods is
investigated. Crystal structure analyzed from X-ray diffraction reveals that as-deposited
ZnO thin films are monophasic exhibiting hexagonal wurtzite structure. Increased
intensity of diffraction peak corresponding to (101) plane confirms the preferential
growth of ZnO nanorods. Morphology examined by SEM reveal the growth of ZnO
nanorods with different dimensions, mostly less than 100nm depending upon the
concentration and reaction time. Spectroscopic ellipsometry is used to study optical
properties of ZnO nanorods for their viability in optoelectronic applications.

1. INTRODUCTION

ZnO is the most interesting II–VI compound semiconductor (Ali et al. 2011). ZnO
has a large band gap of 3.37 eV, which has a large exciton binding energy of 60 MeV
(Cruz et al. 2014). It is mostly found in wurtzite crystalline structure. ZnO nanostructure
have been broadly used in surface acoustic wave devices, field effect transistor,
transparent electrodes, display devices (Nithya and Radhakrishnan 2012), photonic
crystals, optoelectronics (Sunandan et al. 2009), nanogenerators, UV sensors (Amjed
et al. 2015), photodiodes, light emitting diodes (Jing et al. 2014), solar cell, and nano-
piezoelectronics (Omer et al. 2015). ZnO nanostructure can be form in different shapes
such as nanorings, nanopropellers, nanoribbons, nanobelts, nanowires/nanorods, and
nanotubes (Poornajar et al. 2016).

ZnO nanostructure can be synthesized by using variety of well-established
synthesis techniques, such as sputtering, spray pyrolysis (Ocakoglu et al. 2015), metal
organic chemical vapor deposition (Jambure et al. 2014), thermal deposition, electro
deposition, physical vapor deposition (PVD), hydrothermal, electron beam evaporation
(Poornajar et al. 2016), pulsed laser deposition (PLD), molecular beam epitaxy (MBE)
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(Ahmed et al. 2015). However, these methods are highly expensive because they
require high vacuum conditions, costly apparatus and high temperature conditions.

Chemical bath deposition (CBD) is one of the simple and old nanostructure
fabrication technique. This technique is comparatively in-expansive because of low cost,
low temperature and environmentally not dangerous. There are a number of
parameters which have an effect on the properties of ZnO nanorods synthesized by
chemical bath deposition (CBD) technique. Among them, type of additives, solvents,
and type of precursor, time and temperature of chemical bath deposition (CBD), and
types of the substrates are effective parameters for chemical bath deposition (CBD)
technique (Pourshaban et al. 2015).

However, there are some challenges in the synthesis of well aligned and large
aspect ratio ZnO nanorods. In aspect of morphologies of nanostructures, nanorods
have large surface area. This large surface area of ZnO nanorods is beneficial for
absorption of light and charge separation. It is an important factor in solar-to-electric
conversion.

In this work, ZnO thin film was deposited on glass substrate by using chemical
bath deposition (CBD) method at 90°C with variation in solution concentration and
deposition time.

2. EXPERIMENTAL TECHNIQUE

ZnO nanorod arrays were grown on glass substrates by chemical bath deposition
(CBD) technique. The glass substrates were cleaned ultrasonically for 15 minutes each
in acetone and in isopropyl alcohol (IPA). All chemicals were of analytical grade. In a
typical procedure, glass substrates were suspended in an aqueous solution of zinc
nitrate Zn(NO3)2.6H2O mixed with hexamethylenetetramine (HMTA) in a glass beaker.
The solution was magnetically stirred until complete dissolution. The growth
temperature was 90 °C and in the first step solution concentration was varied from
25mM to 125mM. After optimization of solution concentration i.e. at 100mM deposition
time was varied as 3 h, 24 h, and 48 h. Finally, ZnO nanorods grown substrates were
rinsed in deionized water and dried at room temperature. Fig. 1 represents the
experimental set up for the deposition of ZnO nanorods on the glass substrate.
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where D, θ, λ, and β represent the average crystallite size, Bragg diffraction angle, X
ray radiation wavelength, and full width at half maximum value, respectively.
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values showed that molarity concentration is one of the parameters that influences the
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consequences on the thin films density and morphology
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Fig. 3 Variation in transmission fo
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Fig. 4 (a) Transmission Coefficient, (b)
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represents the dielectric response, as a function of frequency, of as
thin films by varying the deposition time. It has been visualized from the

graphs that the dielectric constant of ZnO remains almost same at lower frequencies
and increases sharply near frequencies of 15kHz, while there is also slight increase in
the values of dielectric constant by increasing the deposition time. On the other hand,
there is a decrease in the values of tangent loss with respect to dielectric constan
increasing the frequencies as shown in Fig. 5 (b)

The dielectric constant (ε) of a material has low values initially because of the 
space charge distribution below 100Hz. While by increasing the frequ
be further decrease in the value of dielectric constant as the dipoles could not
applied ac electric field resulting in the decrease of dielectric constant at higher

et al. 2005). However, in the current work, increase in the dielectric
value is observed at high frequencies which shows anomalous behavior
might have observed because of the surface compactness of the thin films

Extinction Coefficient and (d)

as a function of frequency, of as
thin films by varying the deposition time. It has been visualized from the

remains almost same at lower frequencies
and increases sharply near frequencies of 15kHz, while there is also slight increase in
the values of dielectric constant by increasing the deposition time. On the other hand,

angent loss with respect to dielectric constant by

The dielectric constant (ε) of a material has low values initially because of the 
space charge distribution below 100Hz. While by increasing the frequency there should

could not follow the
applied ac electric field resulting in the decrease of dielectric constant at higher

ncrease in the dielectric
value is observed at high frequencies which shows anomalous behavior. Such behavior

surface compactness of the thin films (Rao and



Kumar 2009) i.e. increased number of nanorods with decreased
increased dielectric constant and decreased tangent loss was observed at higher
frequencies.

Fig. 5 (a) Dielectric Constant Fig. 5

4. CONCLUSIONS

In summary, ZnO nanorods
chemical bath deposition technique. S
investigated based on different molarity concentrations and reaction time. XRD
revealed that the deposited fil
Intensity of diffraction peak confirm
in (002) plane. Optical spectra
that all the films have transmittance more than 80
to 100mM, transparency of the films slightly improved and this high transmittance is
good for ZnO in optoelectronic applications as window layer.
ZnO films for different deposition time show
dielectric constant by increasing the deposition time but on the other hand decrease in
tangent loss is observed.
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