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ABSTRACT 
 

In this paper, the isotropic damage model of Kachanov is studied under small 
deformation theory. From the standard damage model, the Kachanov damage model is 
carried out in the same manner. The Kachanov damage model is capable of presenting 
different phases of material behavior and easily implemented via the numerical method. 
Several numerical examples are provided to illustrate a very satisfying performance of 
the Kachanov damage model in 2D and 3D configurations.  

 
1. INTRODUCTION 
 

In the plasticity model, the elastic response is assumed to remain the same in 
loading and unloading. However an inelastic deformation pertains to cracks can modify 
the elastic response in unloading phase which are indeed observed in loading/unloading 
cycles of brittle materials, such as ceramics, glass or concrete. In order to reproduce this 
kind of inelastic behavior, the damage model is proposed by several researchers (e.g. 
Lematre and Chaboche 1988). One of the famous models is introduced by Kachanov in 
1958, where the cracking phenomena is developed by a continuum mechanics model. 
In this model, a single internal variable of damage is exploited. For the intact material 
with no cracks, this internal variable of damage takes a value of  zero, meanwhile it can 
further increase to 1 to present a fully damaged material. In 2D and 3D settings, the 
compliance tensor D of a damage state is selected as the internal damage variable. 
Hence the constitutive relation for a damaged state is then rewritten. The paper outline 
is as follows. In section 2, the theoretical formulation of Kachanov damage model 
subjected to small strain theory is presented. In section 3, several simulations are 
programmed in FEAP v8.4 to illustrate the behavior of material embedded with Kachanov 
damage model. 
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2. THEORETICAL FORMULATION OF KACHANOV DAMAGE MODEL 
 
The construction of 3D Kachanov damage model is briefly presented, see 

Ibrahimbegovic (2009). The internal damage variable for 3D damage model is chosen 
as the fourth order compliance tensor D, which is equal to the inverse of elasticity tensor 
C at the intact condition. The compliance tensor components are modified by the damage 
process, in order to represent the cracking produced by different damage mechanisms. 
All cracks are assumed to be inactive in unloading, hence 

 

 (1) 

 
The complementary energy potential is defined correspondingly as follows. 

 

 

(2) 

 

The hardening potential energy is 𝛯(𝜁) =
1

2
𝑞𝜁 . The damage criterion for standard model is 

governed by yield function Ф(σ,q). 
 

 

(3) 

 
where σf is stress limit of fracture, the function q(ζ)=-Kζ controls the evolution of the 
damage threshold via the constant hardening modulus K of prescribed material. The 
elastic regime is corresponding to negative value of the damage function Ф(σ,q)<0 where 
internal variable and compliance tensor remain unchanged. By contrast, a zero value of 
the damage function denotes the presence of damage evolution. This produces the 
damage dissipation, which satisfies the second thermodynamics principle. 

 

 

(4) 

 

In an elastic process, with no change of internal variables and zero damage dissipation, the 
above equation confirms the constitutive equation as follows. 

 

 

(5) 

 

In an inelastic process, the same constitutive equation is still validated hence a reduced form of 
the damage dissipation is revealed. 

 

 

(6) 
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In all admissible candidates, the solution of stress maximizes the damage dissipation in Eq. (6) 
following the principle of maximum damage dissipation. Thus this problem is transformed into 
a constrained minimization problem. By means of the Lagrange multiplier method, the 
unconstrained minimization problem is written as follows. 

 

 

(7) 

 

By exploiting the last result, it is possible to provide the explicit form of the evolution 
equations from the corresponding Kuhn-Tucker optimal conditions for minimization problem in 
Eqs. (8) and (9), 

 

 

(8) 

 

These equations are accompanied by loading/unloading conditions, which are also obtained as 
a part of the Kuhn-Tucker optimal conditions 

 

 (9) 

 

A new definition of the damage multiplier is introduced leading to a simple evolution 
equation for damage internal variable 

 

 

(10) 

 

The corresponding evolution of the compliance tensor is computed from the intact state. 
 

 
(11) 

 

Introducing a definition of the damage variable d∈[0,1], the stress is now computed as follows. 
 

 

(12) 

 

The value of the Lagrange multiplier is consequently revealed from Eq. (8). 
 

 

(13) 

 

The constitutive equation for the stress and strain rate is derived, hence reveal the form of 
tangent elastodamage modulus for the continuum problem. 
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(14) 

 

 The standard finite element approach is employed to discretize the physical domain and 
construct corresponding discrete governing equations. Consequently, the stiffness matrix is 
assembled over entire domain of structure and the conventional equation fint = fext is established 
in conventional manner. Details on finite element approach can be found in Zienkiewicz et al 
(2005).  

 

 

(15) 

 

3. REPRESENTATIVE NUMERICAL EXAMPLES 
 

 The Kachanov damage model is programmed under quasi-static analysis in FEAP v8.4 
(Taylor 2015). In the 2D case, the isoparametric constant stress/strain triangle element is 
employed, while the isoparametric linear tetrahedron element is utilized for 3D case. The 
material properties are listed as: elastic modulus E = 200e5, poisson’s ratio ν = 0.25, stress limit 
of fracture σf = 30e3 and hardening modulus K = 200e4. The imposed displacement at the right 
end in 2D case or at the top of specimen in 3D case. The loading diagram of imposed 
displacement is plotted within 250 time steps (dt=0.1s) in Fig. 2(h). These simulations converge 
with 2 iterations for elastic regime and 5 iterations for inelastic regime (total residual energy 
under 1e-25). 

 

 3.1 Simple tension test in 2D 

 The test specimen is a 10x3 rectangular bar. Each left and right end is clamped by 
simple rollers. The displacement field along x and y direction is shown in Fig. 1(a-b). The 
value of damage variable is around 4.06e-3 over entire domain at the final step as in Fig. 
1(c). The internal damage variable is frozen when the specimen is in elastic phase or 
unloading regime. Meanwhile, the internal damage variable increases along with time 
when the specimen is under loading regime as in Fig. 1(d-f). 
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(a) Displacement ux (b) Displacement uy 

 
 

(c) ξ over entire domain (d) Load vs displacement 

  

(e) Evolution of ξ at element 18 (f) Evolution of μ at element 18 

Fig. 1 Simple tension test in 2D - Kachanov damage model 

 3.2 Simple tension test in 3D 

 The test specimen is a 1x1x1 cube. In each direction, it is clamped by simple rollers. 
The displacement field along each direction is shown in Fig. 2(a-c). The value of damage 
variable is nearly constant around 3e-2 over entire domain at the final step as in Fig. 2(d). 
The internal damage variable is frozen when the specimen is in elastic phase or 
unloading regime. Meanwhile, the internal damage variable increases along with time 
when the specimen is under loading regime as in Fig. 2(e-g). 
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(a) Displacement ux (b) Displacement uy 

  

(c) Displacement uz (d) ξ over entire domain 

  

(e) Load vs displacement (f) Evolution of ξ at element 18 

  

(g) Evolution of μ at element 18 (h) Loading diagram (𝑢)¯  

Fig. 2 Simple tension test in 3D - Kachanov damage model 

 

4. CONCLUSION 
 
The isotropic damage model of Kachanov is reviewed under small deformation 

theory. The development of Kachanov model is established on the standard damage 
model. Several phases of material damage are presented by Kachanov damage model 
in the numerical examples. The results show a good performance of Kachanov damage 
model in both two-dimensional and three-dimensional settings. 
 
ACKNOWLEDGEMENT 



The 2020 World Congress on
The 2020 Structures Congress (Structures20)
25-28, August, 2020, GECE, Seoul, Korea

 
This work is financially supported under the research project SELT-TUM by Agence 

Nationale de la Recherche (ANR). Moreover, Prof. Adnan Ibrahimbegovic is also 
supported by Institut Universitaire de France (IUF). 
 
 
REFERENCES 

 
Lemaitre, J. and Chaboche, J.L. (1988), “Mecanique des materiaux solides”, Paris, 
 Dunod 
Ibrahimbegovic, A. (2009), “Nonlinear solid mechanics: theoretical formulations and 
 finite  element solution methods”, Berlin, Springer 
Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2005), “The Finite Element Method: Its 
 Basis and Fundamentals”, Oxford, Elsevier 
Taylor, R.L. (2015), “FEAP - Finite Element Analysis Program”, University of California, 
 Berkeley, http://www.ce.berkeley/feap 

http://www.ce.berkeley/feap

