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ABSTRACT 

 
     Vibration of railway bridges due to the impact exerted by high-speed trains has 
been a concern in the design of these bridges. The train-induced vibration, when 
transmitted to the bridge foundation, may affect the nearby area where factories with 
vibration-sensitive manufacturing equipment may be hosted, in particular, the high-tech 
semiconductor industries. The vibration, if not dealt with properly, may affect the 
production of existing manufacturers and locales’ ability to attract new companies in the 
high-tech sector. In this paper, a case study of a railway bridge under train’s moving 
loads is conducted. A simply supported railway bridge representative of the railway 
bridges used in Taiwan high-speed rail is selected at the outset. Two types of high-speed 
trains, namely the Shinkanshen bullet train in Japan and the TGV train in France, are 
used as the moving loads on the bridge. Dynamic analysis of the bridge under moving 
loads in the form of analytical and finite element simulations is conducted, with a goal of 
examining whether the vibration is excessive under the maximum operating speed of 300 
km/h. Results indicate that under maximum operating speed the dynamic response of 
the bridge is well under codified limits in both maximum deflection and end rotation of the 
bridge, and no resonance effect between the bridge and the train is observed. This paper 
also investigates the feasibility of adding a tuned mass damper to control the dynamic 
response of the bridge. Results show that the tuned mass damper can effectively reduce 
the vibration when the bridge resonates with the moving train.       
 

1. INTRODUCTION 
 
     High-speed rail is a type of rail transport that runs significantly faster than traditional 
rail traffic; as a result, the vibration induced by a high-speed train when passing over a 
railway bridge is expected to be increased to a higher level as compared to regular-speed 
trains. The dynamic amplification related to the vertical deflection of the railway bridges 
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due to impact effect associated with trains’ passing may be significant and could 
potentially affect comfort of the travelling public, service life of the bridge, as well as the 
habitability of the surrounding area owing to propagated bridge vibration to the ground. 
The train-induced ground vibration, if not dealt with properly, may affect the production 
of nearby existing manufacturers, particularly in the high-tech sector such as semi-
conductor and liquid crystal display industries. It may also affect locales’ ability to attract 
new companies, especially when companies in the high-tech industries are looking for 
sites for manufacturing, the ground borne vibration may be a major concern in their 
decision-making process, as the factories with vibration-sensitive equipment may be 
affected inevitably. 
     To assess the train-induced vibration of railway bridges, several vehicle-bridge-
interaction models have been proposed in the literature (Liu et al. 2009, Zhang et al. 
2008, Zhang et al. 2010, Salcher and Adam 2015, Yau and Fryba 2015). In most of these 
studies, a high-speed train is often simulated using complicated dynamic models, e.g. a 
car of the train is modeled as a moving mass with several springs and dash pots to 
represent the suspension system of the train. Both vertical and rotational responses of 
the train-vehicle system can also be simulated, in order to derive more precisely the 
dynamic response of the bridge considering its interaction with the trains. Although 
intensive research work has been conducted in this aspect, their application in practice 
is often quite limited due to the complexity in creating the analytic model and to simulate 
the vehicle-bridge interaction. To tackle this issue, the use of finite element method to 
perform analysis of the train-bridge interaction has been developed (Kwasniewski et al. 
2006, Zhong et al. 2015). Finite element method uses mathematics to quantify structural 
behavior, wave propagation, etc., and has been widely used in solving many engineering 
problems. Despite its powerfulness in solving mathematical equations used to describe 
the physical phenomenon, the requirement for the users to understand, model, and 
interpret the results is quite challenging, especially for practical bridge engineers.  

In this paper, a case study of a railway bridge under train’s moving load is 
conducted. The paper uses a simple approach to model the railway bridge under high 
speed trains, aiming at reducing the complexity in the modeling process and obtaining 
promptly the bridge responses under train loads. A simply supported railway bridge 
representative of the railway bridges used in Taiwan high-speed rail is selected at the 
outset. The analytic model of a simply supported bridge under moving loads developed 
by Yang and Yau (1997) is adopted, with a goal of simplifying the interaction analysis 
and focusing on the bridge’s dynamic response. Two types of high-speed trains, namely 
the Shinkanshen (SKS) bullet train in Japan and the TGV train in France, are used as 
the moving loads on the bridge. Dynamic analysis of the railway bridge under SKS and 
TGV trains at operating speeds are conducted. Simple finite element modeling using 
consistent mass beam element is also conducted, with a goal of verifying the response 
given by the analytic model. A tuned mass damper is attached to the mid-span of the 
bridge, to test the feasibility of adding such damping system to reduce the vibration 
induced by the high-speed trains.  
 

2. ANALYTICAL MODEL 
 

2.1 A simply supported bridge subjected to a moving load with constant speed 



The 2020 World Congress on
The 2020 Structures Congress (Structures20)
25-28, August, 2020, GECE, Seoul, Korea

Simply supported bridges are widely used in railway systems due to several obvious 
advantages over continuous bridges, e.g. easy to design/construct/maintain, no 
consequence to the spanning beams if supporting pier sinks, no effects on bridge span  
if expansion/contraction due to temperature variations occurs, etc. Due to the afore-
mentioned reasons, simply supported bridges are adopted by the Taiwan high-speed rail 
as the main structural type for short span railway bridges. Considering the great 
complexity of the train-bridge interaction, in the bridge model for analysis, the following 
assumptions are made: 
 
1. The beam is a Euler-Bernoulli beam with a homogeneous and uniform section. 
2. The mass of the train is significantly lighter than the bridge so that the inertia effect of 

the train can be neglected, and the train can be treated as moving loads. 
3. Proportional damping of the bridge, namely the damping force is proportional to the 

kinetic and potential energies of the bridge, is assumed. 
4. The bridge is initially at rest. 

 
Fig. 1. A simply supported beam under a moving load with a constant speed. 

 

When a simply supported beam bridge is subjected to a moving load 𝑝  with 

constant speed 𝑣 shown in Fig. 1., the equation of motion can be expressed as: 
 

𝜌𝐴𝑢̈(𝑥, 𝑡) + 𝑐𝑒𝑢̇(𝑥, 𝑡) + 𝑐𝑠𝐼𝑏𝑢̇(𝑥, 𝑡) + 𝐸𝐼𝑏𝑢(𝑥, 𝑡) = 𝑝𝛿(𝑥 − 𝑣𝑡), 0 < 𝑣𝑡 < 𝐿          (1) 
 

Where 𝑢(𝑥, 𝑡) is the flexural deflection of the bridge, 𝜌 is the density per unit length of 

the bridge, 𝐴  is the cross-sectional area, 𝑐𝑒  and 𝑐𝑠  are the external and internal 
damping coefficients, respectively, 𝐼𝑏 is the second moment of the area of the bridge 
section, 𝐸 is the Young’s modulus of the bridge material, 𝑝 is a moving load, 𝛿() is 

the Direct Delta function, 𝐿 is the bridge span,「∙」represents taking first derivative with 

respect to time 𝑡, and「」 represents taking first derivative with respect to distance 𝑥. 

     Solution to Eq. (1) can be obtained using the method of separation of variables, 
and is listed below:  
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𝑞𝑛
𝑡 = 𝑒−𝜉𝑛𝜔𝑛𝑡[2𝜉𝑛𝑆𝑛 cos 𝜔𝑑𝑛𝑡 +

𝑆𝑛

√1−𝜉𝑛
2

(2 𝜉𝑛
2 + 𝑆𝑛

2 − 1) sin 𝜔𝑑𝑛𝑡                       (2) 

 

Where 𝑆𝑛 =
Ω𝑛

𝜔𝑛
=

𝑣𝐿

𝑛𝜋
√

𝜌𝐴

𝐸𝐼𝑏
, is the ratio of driving frequency to the 𝑛𝑡ℎ mode Ω𝑛 (=

𝑛𝜋𝑣

𝐿
) 

to the 𝑛𝑡ℎ natural frequency 𝜔𝑛 (=
𝑛2𝜋2

𝐿2 √
𝐸𝐼𝑏

𝜌𝐴
), 𝜉𝑛 is the damping ratio of 𝑖𝑡ℎ mode, 𝑞𝑛

𝑡  

is the transient response of the bridge, 𝜔𝑑𝑛 = 𝜔𝑛√1 − 𝜉𝑛
2  is the damped natural 

frequency of the bridge. 
     For simply supported bridge the deflection at mid-span is usually the deflection 

value of concern for design. Since at mid-span (𝑥 =
𝐿

2
), for second mode, forth mode, 

sixth mode, etc. (n=2, 4, 6…) the sin
𝑛𝜋𝑥

𝐿
 in Eq. (2) becomes zero and mid-span can be 

considered a node, and since the bridge response 𝑢(𝑥, 𝑡) in Eq. (2) decays rapidly with 
the value of n (in 𝑛−4 fashion), first mode response is deemed representative of the 
overall bridge’s response. The dynamic response of the bridge at mid-span under a 

moving load 𝑝 with constant speed 𝑣 can therefore be written as: 
 

𝑢 (
𝐿

2
, 𝑡) =

2𝑝𝐿3

𝐸𝐼𝑏𝜋4

(1−𝑆1
2)2+4𝜉1

2𝑆1
2 [(1 − 𝑆1

2) sin Ω1𝑡 − 2𝜉1𝑆1 cos Ω1𝑡 + 𝑞1
𝑡], 0 ≤ 𝑡 ≤

𝐿

𝑣
             (3) 

 
Since the acceleration response of the bridge is a key factor affecting the comfort of the 
traveling public in the trains, the acceleration response should also be obtained. The 
acceleration response of the bridge can be derived by taking second derivative of the 

displacement response 𝑢(𝑥, 𝑡) in Eq. (2) with respect to time 𝑡. Similarly, mid-span will 
be a node for second mode, forth mode, sixth mode, etc. (n=2, 4, 6…), if the damping of 
the bridge is ignored for simplicity, the acceleration response at mid-span can be 
expressed as: 
 

𝑢̈ (
𝐿

2
, 𝑡) =

2𝑝𝐿3

𝐸𝐼𝑏𝜋4
∑

sin
𝑛𝜋

2

1−𝑆𝑛
2 (

𝜋𝑣𝜔𝑛 sin 𝜔𝑛𝑡

𝑛3𝐿
−
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𝑛=1,3,5 , 0 ≤ 𝑡 ≤

𝐿

𝑣
                     (4) 

 
Note that to obtain the acceleration response at mid-span one can choose the first few 
modes but not only the first mode like the displacement response, as the acceleration 

response will not decays rapidly with 𝑛. 
 

2.2 A simply supported bridge subjected to a series of moving loads  
    To model the loading of a high-speed train on the bridge, one may consider the train 

loading to be composed of a series of axle loads at constant speed 𝑣, in which the front 

axle in each car of the train moves at an equal spacing 𝑑, while the rear axle in each car 
of the train also moves at an equal spacing 𝑑, where 𝑑 is the distance between two 
front axles in two adjacent cars as shown in Fig. 2. The distance between front and real 

axels of a car is 𝐿𝑐. If damping of the bridge is neglected for simplicity, the equation of 
motion for this bridge-train system can be written as: 
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𝜌𝐴𝑢̈(𝑥, 𝑡) + 𝐸𝐼𝑏𝑢(𝑥, 𝑡) = ∑ 𝑝[𝑈𝑘(𝑡, 𝑣, 𝐿) + 𝑈𝑘(𝑡 − 𝑡𝑐 , 𝑣, 𝐿)]𝑁
𝑘=1 ,                     (5) 

𝑈𝑘(𝑡, 𝑣, 𝐿) = 𝛿[𝑥 − 𝑣(𝑡 − 𝑡𝑘)][𝐻(𝑡 − 𝑡𝑘) − 𝐻(𝑡 − 𝑡𝑘 − 𝐿/𝑣)  
 

Where 𝑡𝑘 = (𝑘 − 1)𝑑/𝑣 is the time of entering the left support of the bridge, 𝑡𝑐 = 𝐿𝑐/𝑣 
is the time difference between front and rear axles. Solution to Eq. (5) can be similarly 
solved using the method of separation of variables assuming boundary conditions for 
simply supported bridge is initially at rest, and can be expressed as: 
 

𝑢(𝑥, 𝑡) =
2𝑝𝐿3

𝐸𝐼𝑏𝜋4
∑
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𝑛=1 𝑃𝑛(𝑣, 𝑡 − 𝑡𝑐)],                          (6) 

𝑃𝑛(𝑣, 𝑡) = ∑ [sin Ω𝑛(𝑡 −𝑁
𝑘=1 𝑡𝑘) − 𝑆𝑛 sin 𝜔𝑛(𝑡 − 𝑡𝑘)]𝐻(𝑡 − 𝑡𝑘) +

(−1)𝑛+1 ∑ [sin Ω𝑛(𝑡 −𝑁
𝑘=1 𝑡𝑘 − 𝐿/𝑣) − 𝑆𝑛 sin 𝜔𝑛(𝑡 − 𝑡𝑘 − 𝐿/𝑣)]𝐻(𝑡 − 𝑡𝑘 − 𝐿/𝑣)  

 
Where N is the number of cars that have passed the left end of the bridge. 

 
Fig. 2. A simply supported beam under a series of moving loads with constant speed. 

 

    Similarly, the displacement response of the bridge decays with 𝑛, therefore, using 
only first mode (𝑛 = 1) to represent the overall structural response should be sufficient. 
If neglecting the damping ratio of the structure, the deflection at mid-span can be written 
as: 
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If end rotation is to be found, one can take first derivative of 𝑢(𝑥, 𝑡) in Eq. (6) with respect 

to 𝑥 and plug in 𝑥 = 0 to give: 
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to select the first three modes of vibration to represent the overall end rotation of the 
bridge. 

For simply supported railway bridges under train loading, due to the fact that for the 
bridge the nature of train is a series of constant and repeat loads, there must exists 
resonance and cancellation effects on the bridge. Detailed derivations for finding the train 
speeds causing resonance and cancelation effects on the bridge can be found in Yang 
and Yau (1997), and final resonance and cancellation speeds in terms of the length of a 

car, 𝑑, and first natural frequency of the bridge, 𝜔1, are listed below. 
 

𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑆𝑝𝑒𝑒𝑑: 𝑣𝑟𝑒𝑠
(𝑛)

=
𝜔1𝑑

2𝑛𝜋
, 𝑛 = 1,2,3 …                                      (9) 

 

𝐶𝑎𝑛𝑐𝑒𝑙𝑙𝑎𝑡𝑖𝑜𝑛 𝑆𝑝𝑒𝑒𝑑: 𝑣𝑐𝑎𝑛
(𝑛)

=
𝜔1𝐿

(2𝑛−1)𝜋
,   𝑛 = 1,2,3 …                               

(10) 
 

It can be observed from Eqs. (9) and (10) that when 𝑛 = 1 both the resonance and 
cancellation speeds are the highest. Although not explicitly shown, the first resonance 
speed is the main cause of the amplified bridge deflection (Yau and Yang 2000).  
 
3. CASE STUDY 
 

3.1 A simply supported bridge subjected to a moving load  
The approach to model the railway bridge under high speed trains can be 

demonstrated using a simply supported precast reinforced concrete bridge 
representative of the railway bridges used in Taiwan high-speed rail. Cross-section of 
the bridge is shown in Fig. 3. Properties of the bridge and two high-speed trains are 
shown in Tables 1 and 2, respectively. To verify the accuracy of the analytical procedures 
shown in Session 2, a moving load with constant speed is first applied, and damping ratio 
of the railway bridge is neglected for simplicity. Fig. 4 shows the mid-span deflection of 
the bridge under varied train speeds, while Fig. 5 shows the mid-span acceleration of the 
bridge. It can be seen from Fig. 4 that in mid-span deflection the contribution from the 
third mode is insignificant as compared to the first mode, thus it is reasonable to consider 
only first mode response. However, for mid-span acceleration the third mode cannot be 
neglected as its contribution in mid-span acceleration is obvious, as can be seen from 
Fig. 5. Fig. 6 shows the relation of the mid-span deflection with varied bridge spans and 
speeds of the moving load. It can be seen from Fig. 6 that with the increase of bridge 
span and speed, the mid-span deflection also increases, but all of them are much smaller 

than the allowable deflection (
𝑢𝑚𝑎𝑥

𝐿
≤

1

1600
= 0.000625) specified in the bridge design 

code (Editorial Office (2004)).  
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Fig. 3. Typical cross-section of high-speed railway bridges in Taiwan (Lee et al. 1998). 

 
 

 
Fig. 4. Mid-span deflection of the bridge under varied train speeds. 
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Table 1 Properties of the high-speed railway bridge. 
 

𝐸  

(𝐺𝑃𝑎) 

𝜌  

(𝑘𝑔/𝑚3)  

𝐴  

(𝑚2) 

𝐼𝑏  

(𝑚4) 

𝐿  

(𝑚) 

𝜔1  

(𝑟𝑎𝑑/𝑠𝑒𝑐) 

𝑝  

(𝑡𝑜𝑛) 
 

29.43 
 

2400 9.75 5.2 31.3 25.76 50 

 
Table 2 Properties of TGV and SKS trains. 

 
TGV SKS 

𝑝  

(𝑡𝑜𝑛) 
 

𝑑  

(𝑚) 

𝐿𝑐   

(𝑚) 

𝑝  

(𝑡𝑜𝑛) 

𝑑  

(𝑚) 

𝐿𝑐   

(𝑚) 

16.3 
 

21.7 18.7 24 25 17.5 

 
 

 
Fig. 5. Mid-span acceleration of the bridge under varied train speeds. 
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Fig. 6. Mid-span deflection of the bridge under varied bridge spans and train speeds. 

 
3.2 A simply supported bridge subjected to train loads 
The bridge is further subjected to two types of high-speed trains, namely SKS from 

Japan and TGV from France to test if the vibration caused by the two high speed trains 
is under the allowable limits specified in the codes. Fig. 7 shows the maximum mid-span 
deflection of the bridge with varied train speeds. It can be seen from Fig. 7 that there 
exist several resonance speeds for the two high speed trains. For SKS train, the first 
three resonance speeds are 450, 225 and 150 km/h, and the first resonance speed (450 
km/h) causes the most significant bridge vibration. However, the current design bridge at 
maximum train operating speed (300 km/h) avoids this resonance effect. For TGV train 
the bridge vibration caused by the first resonance speed (336 km/h) is not obvious, which 
may be attributed to the fact that the first resonance speed is close to one of the 
cancellation speeds. Note that maximum deflection caused by either SKS or TGV trains 
is smaller than the allowable deflection-to-span ratio of 1/1600. It should also be noted 
that if the maximum deflection deflection-to-span ratio is less than 1/2800, then the check 
for passengers’ riding comfort is not needed (Editorial Office 2004).  

 

 
Fig. 7. Maximum mid-span deflection of the bridge with varied train speeds. 
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Fig. 8 shows the maximum end rotation of the bridge with varied train speeds. It 

can be seen from Fig. 8 that the maximum end rotation of SKS train at first resonance 

speed is larger than the allowable end rotation of 
0.002

ℎ
 (= 0.000625) specified in the 

code (Editorial Office 2004), where ℎ is the distance from the rail track top to the bottom 
of the bridge. However, the maximum operating speed of the Taiwan’s high-speed rail 
using SKS train system is 300 km/h, thus the end rotation is well under the code-specified 
value. For TGV train, the largest end rotation occurs at second resonance speed, not the 
first one. Despite this, the maximum end rotation is still smaller than the allowable end 
rotation. Based on the observations made from these two cases, one can conclude that 
at the maximum operating speed of 300 km/h, the use of current bridge type, section, 
and span length is suitable for the operation of either SKS or TGV trains, in terms of 
safety of the bridge and comfort of the traveling public. Meanwhile, since the railway 
bridge is simply supported, the vibration in the bridge should not affect the joints as they 
are considered nodes. The impact transfer from the bridge to the ground is thus purely 
the axial load of the bridge column from axle loads of the high-speed trains. This impact 
loading is transient in nature and is close to a white noise, thus should not cause 
significant vibration affecting the nearby area.   

 
 

 
Fig. 8 Maximum end rotation of the bridge with varied train speeds. 

 
3.3 Vibration control of the railway bridge with tuned mass dampers 
Results from Section 3.2 indicate that for the current simply supported railway bridge, 

there is no resonance effect for both SKS and TGV trains under the maximum operating 
speed of 300 km/h, and the maximum deflection and end rotation are well within the 
allowable limits specified in the code. The comfort of the traveling public is also ensured 
due to the very small bridge deflection. However, we are still interested to see if the 
vibration of the bridge can be further reduced, especially when there is a resonant effect 
at second or third resonance speeds. To this end, a finite element model for the simply 
supported railway bridge is established. This simple model uses consistent mass and 
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stiffness to create the bridge model. The train load is converted to equivalent loading at 
nodes of the beam elements in the model.   

Fig. 9 shows the comparison between analytical solution and numerical simulation 
for TGV train with 16 cars (N=16) running at a resonant speed of 168 km/h. It can be 
seen from Fig. 9 that the two figures match reasonably well. The minor difference 
between analytical and numerical solutions is because the analytical solution considers 
only first mode response, while the numerical solution considers all modes of vibration of 
the bridge structure.   

 

 
 

Fig. 9. Mid-span deflection of the bridge under TGV train at 168 km/h.  
 

To test if the addition of a tuned mass damper can effectively reduce the bridge 
vibration due to high-speed trains, a tuned mass damper is installed in the middle of the 
bridge span inside the bridge cell to control its vertical deflection. The tuned mass damper 
is installed at the mid-span because mid-span has the largest vibration. The tuned mass 
damper has a mass ratio (mass of the tuned mass damper to that of the railway bridge) 
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of 1%, with optimized spring stiffness 𝑘𝑑 and damping coefficient 𝑐𝑑 as shown in Table 
3. The corresponding frequency ratio and damping ratio of the damper are also listed in 
Table 3. The optimal damper parameters are obtained from a gradient based optimal 
search (Lee et. al 2006) assuming white noise input and 1% mass ratio. 

 
Table 3 Optimal design parameters of the tuned mass damper. 

 
Damper 

mass 
𝑚𝑑   

(𝑡𝑜𝑛) 

Damping 
coefficient 

𝑐𝑑   

(𝑘𝑁. 𝑠 /𝑚 ) 

Stiffness 
coefficient 

𝑘𝑑   

(𝑘𝑁 /𝑚 ) 

Mass  
ratio 
 𝜇  

(= 𝑚𝑑/𝑚𝑠) 

Frequency 
ratio  
𝑓  

(= 𝑓𝑑/𝑓𝑠) 

Damping  
ratio 
𝜉𝑑   

(=
𝑐𝑑

2𝑚𝑑𝜔𝑑

) 

7.32 27.3 4.93 1% 0.9857 7.19% 

 

 
(a) N=8 

 
(b) N=16 

Fig. 10. Mid-span deflection of the bridge under SKS train at 266 km/h. 
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Fig. 11. Displacement of the tuned mass damper installed at the railway bridge. 
 

Fig. 10 shows the mid-span deflection of the bridge under SKS train at a resonance 
speed of 266 km/h. It can be seen from Fig. 10 that the bridge resonates with the train 
as the train is operated at resonance speed, and the bridge deflection increases with 
increasing number of cars (N) of the train. With the installation of a tuned mass damper 
at mid-span, the deflection response is reduced significantly. Although the maximum 
operating speed of 300 km/h is not a resonant speed for the current train (SKS) and 
bridge configuration, it may be useful if bridge vibration is a concern for other types of 
train-bridge assembly, or the train is operated near the resonance speeds. Fig. 11 shows 
the displacement time history of the tuned mass damper. It can be seen from Fig. 11 that 
the displacement of the tuned mass damper is relatively small, in both N=8 and N=16 
cases. This is an important characteristic since the space inside the bridge cell is usually 
confined, which makes tuned mass dampers quite suitable for railway bridge applications.  
The tuned mass damper is therefore considered a feasible and effective damper device 
for suppressing bridge vibration caused by high-speed trains. 

 
4. CONCLUSION 
 

In this paper, a case study of a railway bridge under train’s moving load is 
conducted. The paper uses a simple approach to model the railway bridge under high 
speed trains, aiming at reducing the complexity in the modeling process and obtaining 
promptly the bridge responses under train loads. Dynamic analysis of a representative 
simply supported railway bridge under SKS and TGV trains at varied speeds are 
conducted. Simple finite element modeling using consistent mass beam element is also 
conducted, with a goal of verifying the response given by the analytic model. Results 
from the simple model indicated that the bridge response can be readily obtained with 
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sufficient accuracy, and at current maximum operating speed of 300 km/h, bridge 
vibration caused by either SKS and TGV trains are well within the acceptable limits and 
no resonance effect is observed. A tuned mass damper is attached to the mid-span of 
the bridge to test the feasibility of adding such damping system to reduce the vibration 
induced by high-speed trains. Results indicate that the installation of an optimized tuned 
mass damper can reduce the bridge vibration effectively when the bridge resonates with 
the train. 
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