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ABSTRACT 
 

     This study aims to develop meshless point generation technique which can be 
applied to complex geometry. Generally, grid generation for FVM requires a large 
amount of time and labor. However, the point generation technique developed in this 
research enables the points to be generated automatically in the regime of interest. 
Consequently, time required for generation of computational domain can be shortened, 
as compared to that of FVM. Numerical analysis of three-dimensional inviscid flow 
around the body of NASA TM X 2059 model was done for the validation of the 
developed point generation technique. The model was supplemented with four tail fins 
and Twenty-Degree conical nozzle with four vanes. Least square method was selected 
for spatial discretization and LU-SGS method was also adopted for time discretization. 
In addition, Minmod limiter modified for Meshless method was utilized for accurate 
calculation. The result shows that the point generation technique for Meshless method 
is available on external flow of complex geometry together with nozzle. 
 
1. INTRODUCTION 
 

A meshless method is a newly suggested computational fluid dynamics (CFD) 
algorithm in recent years. This method requires only neighboring points of each point 
without mesh. Therefore it is less restrictive when generating the computational domain 
around a complicated or moving geometry than the mesh based method. A meshless 
method was introduced in 1977 at first. Since then, a variety of Meshless algorithms 
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have been studied by former researchers. Since 2000, meshless algorithms which 
analyze compressible flow using moving least square method (LSM) have been 
developed by Katz (2009) respectively and so on. However, previous researchers have 
focused on two dimensional flow until now. In order to analyze three dimensional 
complicated flow field, much more intensified effort to generate computational points 
around a complex geometry is necessary. As a method to this problem, efficient and 
robust three dimensional meshless point generation algorithm is developed in this 
study. For a validation, this algorithm was applied to NASA X TM 2059 with a nozzle 
and vanes that is considered as complex geometry. Then using generated point 
system, computation of flow fields was conducted by the meshless code for 
compressible flow developed by Huh (2013). Least square method and AUSMPW+ 
(Kim 2001) was adopted for the spatial discretization, LU-SGS was adopted for the time 
integration. Results were shown comparing with ones from unstructured method by 
FLUENT.  
 
2. POINT GENERATION ALGORITHM 
 

The generation process of the meshless point system consists of two steps. 
The first step is the near surface point generation and the second step is the 
background point generation. The generation of the near surface point algorithm is 
based on the electric potential theory. And the background point is generated from 
Cartesian grid point 

 
     2.1 Near surface points generation 
     The near surface points are created along the electric field lines which are 
generated from the points on the surface. Assume that the points on the surface have 
charge, the electric field generated from a set of point charge on the surface is derived 
from Coulomb’s law. It is shown in Eq. (1) 
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 In Eq. (1),     ,     ,      are x, y, z component of the electric field at point   

which exists outside the surface,     ,     ,      are x, y, z-coordinate of surface point 

charge which has index  ,   ,   ,    are x, y, z-coordinate of the point  ,   is the 
distance between point   and  , and    is the constant which is determined by users. 

The electric field line can be obtained by Eq. (1). The example of near surface point 
system generated is illustrated in Fig. 1   



  

 

 
 

Fig. 1 The near surface points of UFO shaped object 
 

 
 

Fig. 2 The total point system of UFO shaped object 
 

2.2 Background points generation 
The background points are generated from Cartesian grid point. Consider 

Cartesian grid, Let the interval of x, y and z direction be         . And let the number 
of points of x, y and z direction be         . Then the coordinates of Cartesian grid 

points are denoted as follow.  
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 In Eq. (2),     ,     , and      are initial point where  ,  , and   are 1. From 
Cartesian grid points, the background point system are generated. The total point 
system is accomplished by eliminating the background points inside the near surface 
points. It is illustrated in Fig 2. 
 
3. LOCAL POINTS CLOUD CONFIGURATION STRATEGY 

 
In order to use the least square method, every computational points must be 

composed its own local points cloud. A local points cloud consists of the selected 
neighboring points of certain computational point. For the accuracy and the efficiency of 
the computation, an appropriate strategy of selecting points among the neighboring 
points is necessary. In this study, space is split into 18 sections, then the closest point 
to interested point in each split space is selected for local point cloud. The splitting 
method is as follows. 

Consider a cube which has the computational point             as a center, 
and has Cartesian unit vectors normal to the each face. Then the equation of a plane 
which contains a face of the cube is expressed as Eq. (3) 
 
              (3) 
  

In Eq. (3)  ,  , and   are the normal vector of a face of the cube, where 
                                         , then   is given by  
 
                  (4) 
  

 Where        and    are any point on the face. Basically, space is spilt into six 
by the faces of a cube. In order to divide space into eighteen, every faces of the cube 
are to be divided into five pieces. To divide the faces, let the coordinates of the center 
of one face be               , and the coordinates of one vertex of one face be      

             . Then let the point which internally divides line   ̅̅ ̅̅  into     be       
           . The coordinates of   is given by Section formula for internal division. 

It is shown in Eq. (5) 
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There are the four points of internal division for one face and four vertices which 

can be expressed as Eq. (5). Then, one square is formed by the points of internal 
divisions, and by connecting each vertex and the corresponding points of internal 
division, the four trapezoids are formed as illustrated in Fig. 3.  



  

 
 

Fig. 3 The face divided into five pieces 
 

 Splitting every faces of the cube as previously described, the faces of the cube 
are divided into 30 zones. Consider two trapezoidal zones that sharing one side 

together as a one zone. Additionally, by letting        √      , the cube are 
divided into 18 zones which have same area. It is shown in Fig. 4.  

Consider a connecting line of the centroid point and a neighboring point that 
intersects the surface of the cube, an intersecting point can be matched to any of 18 
divided surface. Then let the coordinates of the neighboring points be             . 
Then the segment of line equation which connect the center and the neighboring point 
is written as Eq. (6). 

 

 
 

Fig. 4 The split zones 
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By solving Eq. (3) and Eq. (6), the location of the intersecting point is 

determined.  According to the position of the intersecting point, the zone where the 
neighboring point belongs is determined. In each divided zone, the closest neighboring 



  

point is determined. Using these 18 points, the local points cloud of the center point is 
composed.   

 
4. NUMERICAL METHOD 
 

4.1 Least square method 
In this study, least square method based on Taylor series expansion is used to get 
unknowns of partial derivative term represented on Eq. (7)   
 Ignoring high order terms, the Taylor expansion from the computational point 
            is denoted as 
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The least square method with weighted function can be expressed as follows. 
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Where   is the index of the point in the cloud. 
For a 3-D case, values of the coefficients are calculated as follows 

 
      (12) 
 

Where                 ,   and,   are denoted in Eq. (13)  
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Using inverse matrix of  ,   can be derived.  
For improving accuracy, a simple inverse distance weighting function is used. It 



  

is represented on Eq. (14) 
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4.2 Governing equation 
Euler equations in strong conservation form are denoted in a Cartesian 

coordinate system for  
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In Eq. (16),   represents a total energy as follows 
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5. NUMERICAL RESULT 
 

5.1 flow around NASA X TM 2059 without a nozzle  
In order to conduct a validation of the meshless point generation method, numerical 
results on the supersonic flow around a missile body obtained using meshless method 
and finite volume method with unstructured grid were compared. The numerical 
schemes and the flow conditions are described in Table 1.  
 

Table 1 Numerical schemes and the flow conditions 
 

Method Meshless Unstructured 

Spatial discretization AUSMPW+ AUSM 

Time integration LU-SGS Explicit 

Number of points 3,040,247 - 

Number of cells - 2,288,459 

model NASA X TM 2059 

Freestream Mach number 2.5 

Freestream pressure (Pa) 100,000 

Freestream temperature (K) 300 

Angle of attack (degree) 0 



  

 
 

Fig. 5 The figuration of NASA X TM 2059 (left) and the computational domain of NASA 
X TM 2059 (right) 

  
As a missile body, NASA X TM 2059 model was selected. Additionally the four 

tail fins are attached to this body. The figuration of missile body and the generated 
meshless point system is shown in Fig. 5. The meshless method used AUSMPW+, and 
FVM used AUSM. Fig. 6 shows the pressure contour at z=0 computed by using the 
meshless method and FVM. Fig. 7 shows pressure distribution along the line y=0.15 at 
z=0 respectively. Lastly Fig. 8 shows the convergence history of two methods. As it is 
shown in Fig.6 ~7, it has been observed that the results of the meshless method is 
similar those of FVM. 
 

 
 

Fig. 6 The pressure contour of each method (left: meshless, right: FVM) 
   

 



  

 
 

Fig. 7 The comparison of the pressure distribution along y=0.15 at z=0 
     

 
 

Fig. 8 The comparison of the convergence history  
 

5.2 flow around NASA X TM 2059 with nozzle and vane 
 

One of the validation cases, the reformed NASA X TM 2059 model is considered. 
In order to integrate the external flow and the internal flow, Twenty-degree conical 
nozzle (Burt 1971) and vanes are added to the previous model. Fig. 9 illustrated the 
figuration of the reformed model and the computational domain. At the condition 
altitude 10km, the computation was conducted. The numerical schemes and the flow 
conditions are described in table 2. 
 



  

 
Table 2 Numerical schemes and the flow conditions 

 

Method Meshless 

Spatial discretization AUSMPW+ 

Time integration LU-SGS 

Number of points 3,303,803 

model NASA X TM 2059 with a nozzle and vanes 

Freestream Mach number 5 

 Free stream Combustion chamber 

pressure (Pa) 26,500 700,000 

temperature 223 3,000 

species air, plume 

Angle of attack (degree) 0 

  

 
 

Fig. 9 The figuration of reformed model (left) and the computational domain (right)  
 

 
 

Fig. 10 Mach number contour (left) and heat of ratio contour (right) 



  

 Fig. 10 illustrates results of computations. The right contour denotes the Mach 
number contour and the left result denotes the heat of ratio contour. From the Mach 
number contour. Mach number varies along the nozzle area. And the heat of ratio 
contour shows that the plume flows out from the nozzle. Lastly, Fig. 11 denotes the 
convergence history. These results show that even if a figuration is complicated, the 
developed technique is still available.  
 

 
 

Fig. 11 The convergence history 
 
 
3. CONCLUSIONS 
 

In this study, the meshless point generation technique which generates 
computational domain and the local points cloud is developed. The numerical results of 
comparison with FVM indicate the meshless point generation technique and the 
meshless method have similar robustness, accuracy to those of unstructured finite 
volume method. Additionally, by analyzing the flow field around NASA TM X 2059 
which has a nozzle and vanes using meshless point generation technique, the 
robustness of this technique is confirmed. 
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