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ABSTRACT 

 

In this paper a nonlinear finite element analysis model is established for cold-formed 
steel zed-section purlins subjected to uplift loading. In the model, the lateral and 
rotational restraints provided by the sheeting to the purlin are simplified as a lateral rigid 
restraint imposed at the upper flange-web junction and a rotational spring restraint 
applied at the mid of the upper flange where the sheeting is fixed. The analyses are 
performed by considering both geometrical and material nonlinearities. The influences 
of the rotational spring stiffness and initial geometrical imperfections on the uplift loading 
capacity of the purlin are investigated numerically. It is found that the rotational spring 
stiffness has significant influence on the purlin performance. However, the influence of 
the initial geometric imperfections on the purlin performance is found only in purlins of 
medium or long length with no or low rotational spring stiffness.  
Keywords: zed-purlin, uplift, imperfection, nonlinear analysis, lateral-torsional buckling, 
moment capacity, finite element. 
 
1. INTRODUCTION 
 

Cold-formed steel sections such as zed, channel and sigma sections are widely 
used in buildings as purlins and rails to support the corrugated sheeting. In practice, 
they are usually connected to the sheeting by screwing through the crest of the 
corrugated sheeting and purlin flange (Rhodes 1992; ENV1993-1-3 2006). The 
corrugated sheeting attached to the purlin provides two main restraining effects to resist 
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the lateral and rotational displacements (ENV1993-1-3 2006). For most types of 
sheeting, the sheeting membrane stiffness provides sufficiently lateral restraint and 
therefore the lateral displacement at the upper flange-web junction may be assumed to 
be fully restrained (ENV1993-1-3 2006; Li 2007). The rotational stiffness comes from 
both the rotational stiffness of the sheeting itself and that of the purlin-sheeting 
connection, which depends on a number of factors including the type of sheeting, the 
type and dimensions of the purlin, and the spacing of fixings between the sheeting and 
purlin. The restraining of sheeting to purlin has significant influence on purlin 
performance. For example, under downward loading the lateral restraint can prevent the 
purlin from lateral-torsional buckling since the flange in compression is laterally 
restrained by the sheeting (ENV1993-1-3 2006; Li 2010). Under uplift loading, however, 
the restrained flange is in tension and the free flange is in compression, so that the free 
flange can still have a lateral-torsional buckling (ENV1993-1-3 2006). 

In literature, there have been a numerous studies on the effects of sheeting on the 
bending and buckling behavior of purlins (Vrany 2006; Vieira 2010). Ye et al. studied the 
influence of sheeting on the linear bending of roof purlins using analytical methods (Ye 
2004). Later, they also investigated the influence of sheeting on the local and 
distortional buckling behaviour of roof purlins using finite strip analysis methods (Ye 
2002). Lucas et al. studied the interaction between the sheeting and purlins using finite 
element methods (Lucas 1997). The lateral-torsional buckling of purlins subjected to 
downward and/or upward loads were also discussed by several researchers (Li 2004; 
Toma 1994; Roger 1997; Svensson 1985; Sokol 1996). Analytical models were 
developed to predict the critical loads of lateral-torsional buckling and the influence of 
sheeting on the lateral-torsional buckling behaviour of roof purlins (Svensson 1985; 
Sokol 1996; Peköz 1982). Experimental tests were performed on both bridged and 
unbridged zed- and channel-section purlins under uplift loads (Hancock 1990; Rousch  
1997). Calculation models for predicting the rotational restraint stiffness of the sheeting 
were proposed (Katnam 2007; Katnam 2007). Design rules have been developed 
specially for the case where the free flange of the purlin is in compression (Vieira 2010). 
Recently, Li et al. proposed an analytical model for calculating the linear bending 
stresses in roof purlins from which the influence of sheeting on the bending performance 
of the roof purlin can be evaluated (Li 2012; Ren 2012).  

Most of the works mentioned above are the linear analysis. For ultimate state 
analysis, nonlinear analysis is needed. For thin-walled structures this should include 
both geometrical and material nonlinearities. In this paper, a nonlinear finite element 
analysis model is established for cold-formed steel zed-section purlins subjected to uplift 
loading. In the model, the lateral and rotational restraints provided by the sheeting to the 
purlin are simplified as a lateral rigid restraint imposed at the upper flange-web junction 
and a rotational spring restraint applied at the mid of the upper flange where the 
sheeting is fixed. The analyses are performed by considering both geometrical and 
material nonlinearities. The influence of initial geometrical imperfections on the uplift 
loading capacity of the purlin is also investigated numerically. 
 
2. FINITE ELEMENT ANALYSIS MODEL 
 

Consider a zed-purlin-sheeting system subjected to an uplift load, in which the 
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upper flange of the zed-section is connected to the sheeting by self-drilling/tapping 
screw fasteners. The attached sheeting provides lateral and rotational restraints to the 
section, which are simplified as a lateral rigid restraint imposed at the upper flange-web 
junction and a rotational spring restraint applied at the mid of the upper flange where the 
sheeting is fixed, as shown in Figure 1. The dimensions of the zed-section analyzed are, 
web depth h = 120 mm, flange width b = 50 mm, lip length c = 15 mm, and thickness t = 
1.5 mm. The material properties of the zed-section are, Young’s modulus E = 210 GPa, 
Poisson’s ratio μ= 0.3, yield stress σy = 350 MPa, and density ρ = 7850 kg/m3. The 
stress-strain curve used for the zed-section is assumed to follow that of the 
elastic-perfectly plastic material. The analyses are carried out for three different 
rotational stiffness values (k = 0, k = 300 N/rad and k = 750 N/rad) in seven different 
lengths ranging from L = 4000 mm to L = 10000 mm. For why k = 300 N/rad and 750 
N/rad are chosen is because those were based on tow extreme cases of the practically 
used cladding.  

The purlin is assumed to be simply supported on its both ends and subjected to a 
uniformly distributed uplift load acting on the middle line of the upper flange. Due to 
symmetry, only half length of the purlin is modeled. The displacement boundary 
conditions on the simply supported cross-section are only applied to the web line at 
which the lateral and vertical components of the displacement are assumed to be zero 
(i.e. v = w = 0). This is to match the cleat connection used in practice. The displacement 
boundary conditions on the symmetric cross-section are applied to all lines in which the 
longitudinal component of the displacement and the angles rotated about the vertical 
and lateral axes are assumed to be zero (i.e. ux =Φy =Φz = 0). The lateral rigid restraint 
imposed at the upper flange-web junction is modeled by adding a zero lateral 
displacement boundary condition on the line representing the upper flange-web 
junction. 

The analyses are conducted using the finite element analysis software ANSYS. The 
four-node shell element SHELL143 is employed, which has six degrees of freedom at 
each node. The element has plasticity, creep, stress stiffening, large deflection and 
small strain capabilities. In addition, a two-node spring-damper element COMBIN14 is 
also employed to describe the rotational spring restraint applied at the middle line of the 
upper flange where the uplift load is also applied. The spring-damper element has 
longitudinal or torsional capacity in 1-D, 2-D and 3-D applications and is able to 
represent the spring restraint boundary conditions. In order to ensure that the results 
obtained are accurate, meshes of different element sizes were used first and it was 
found that the meshes of element sizes smaller than 10 mm provided almost no 
difference in results. Therefore, all analyses have been kept to have a maximum 
element size of 10 mm. Figure 2 shows a typical element mesh and corresponding 
boundary conditions used in the analyses. All analyses are performed by taking into 
account both geometrical and material nonlinearities using an arc-length algorithm. 
 
3. FINITE ELEMENT ANALYSIS WITHOUT CONSIDERING INITIAL GEOMETRIC 
IMPERFECTIONS 
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For given purlin length and rotational spring stiffness, one can obtain the 
load-displacement curve from the finite element analysis. Figure 3 shows the 
load-displacement curves of the purlin of length L = 4000 mm for three different 
rotational spring stiffness values, in which the load is the uniformly distributed uplift load 
acting on the middle line of the upper flange and the displacements are the vertical 
displacement at the upper flange-web junction and the horizontal displacement at the 
lower flange-web junction, both on the symmetric section of the purlin. It can be seen 
from the figure that, the load-displacement curves for purlin with k = 0 are different from 
those for purlin with k = 300 N/rad or k = 750 N/rad. In the former, the load increases 
with the displacements until the load nears its up-limit value where a small increase in 
the load results in a rapid increase in displacements. This indicates that the failure of the 
purlin is a typical limiting failure of plasticity. In the latter, the load increases with the 
displacements until it reaches to a peak point. After the peak point, the load decreases 
with further increased displacements, indicating that the failure of the purlin is a typical 
buckling failure. As it is to be expected, the failure load of the purlin increases with the 
rotational spring stiffness. For example, the failure load of the purlin with k = 750 N/rad is 
over twice that of the purlin with k = 0.  

The reason that the rotational spring not only increases the failure load but also 
alters the failure type of the purlin is because the rotational spring provides some 
restraints on the purlin’s pre-buckling twisting displacements. When a beam is subjected 
to a transverse load, it is initially bent about its major axis. However, after the beam 
occurs a lateral-torsional buckling, the bending axis suddenly moves from its major axis 
to minor axis. Therefore, the post-buckling curve is usually unstable, like what is shown 
in Figure 3 for the purlins with k = 300 N/rad and k = 750 N/rad. However, if a beam is 
initially bent about its minor axis or is simultaneously subjected to bending and twisting, 
the beam deforms gradually towards its post-buckling mode and will eventually have a 
plastic failure, like what is shown in Figure 3 for the purlin with k = 0. 

Figure 4 shows the deformed shapes of the purlins with three different k values 
when the loads reach their ultimate values. It can be seen from the figure that, when k = 
0 the purlin has severe twisting deformation, which significantly reduces the flexural 
rigidity in the loading direction but increases the flexural rigidity in the perpendicular 
direction. As a consequence of this, the bending stresses increase much quicker than 
the actual load does. This leads the purlin eventually to have a plastic failure. The 
deformations of the purlins with k = 300 N/rad and k = 750 N/rad are very similar; both 
are small when compared to that of the purlin with k = 0.  

Figure 5 shows the load-displacement curves of the purlin of length L = 7000 mm 
for three different rotational spring stiffness values. It is found from the figure that the 
curves for k = 300 N/rad and k = 750 N/rad are very similar to those shown in Figure 3, 
except that the loads are smaller as the purlin is longer. The case for k = 0, however, is 
very interesting. It is observed from Figure 5 that the load-displacement curves 
corresponding to k = 0 can be divided into three different regions. The first one is the 
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initial part of the curves where both displacements increase somehow linearly with the 
load. The second one is the mid part of the curves where both displacements increase 
rapidly while the load increases very slowly. The third one is the last part of the curves 
where the vertical displacement increases with the load until it reaches to the maximum 
load point, while the horizontal displacement does not increase very much with the 
increased load. In order to discovery why there exists a flat part in the mid of the 
load-displacement curves, the linear buckling analysis is also carried out, which shows 
the purlin has a lateral-torsional buckling critical load of 0.13 kN/m. This critical load 
matches very well with the load in the mid part of the curves. This indicates that the 
purlin, which is bent initially about its major axis, has had a lateral-torsional buckling 
when the load reaches about 0.13 kN/m. After the buckling the purlin is bent about its 
minor axis. However, since the plastic bending load about the minor axis is greater than 
the critical buckling load 0.13 kN/m, the load can increase continuously until the purlin 
becomes fully plastic. Therefore, the final failure of the purlin is characterized by the 
plastic bending failure. Figure 6 shows the deformed shapes of the purlins when the 
loads reach to their ultimate values. Again, the deformed shapes are very similar, 
although the longitudinal stress contours are different. It should be pointed out that, 
though the plastic failure load of the purlin with k =0 is more than twice its critical 
buckling load, the purlin develops large vertical and horizontal deflections while it 
buckles. Therefore, in terms of the serviceability the purlin will fail when the 
lateral-torsional buckling occurs even though the post-lateral-torsional buckling is 
actually stable.      

 
Figure 7 shows the load-displacement curves of the purlin of length L = 10000 mm 

for three different rotational spring stiffness values. The corresponding deformed 
shapes of the purlins when the loads reach to their ultimate values are shown in Figure 
8, respectively. The main features of these figures are similar to those shown in Figures 
5 and 6 and thus are not discussed further. To demonstrate the difference between the 
critical load of lateral-torsional buckling calculated from linear buckling analysis and the 
failure load obtained from the nonlinear analysis, Table 1 provides a detailing 
comparison. For purlins with k = 300 N/rad or k = 750 N/rad, the critical bucking load is 
found to be higher than the plastic failure load. This is partly due to the influence of 
geometrical nonlinearity and partly due to the influence of material nonlinearity before 
the buckling occurs. For short length purlins without rotational spring restraint, the 
critical buckling load is higher than the plastic failure load, whereas for medium and long 
length purlins, the critical buckling load is lower than the plastic failure load. This implies 
that the influence of the rotational spring on the failure mode of the purlin is also 
dependent on the purlin length.  
 
4. FINITE ELEMENT ANALYSIS WITH CONSIDERING INITIAL GEOMETRIC 
IMPERFECTIONS 
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The analyses described above did not consider the initial geometric imperfections. 

In practice due to transport and construction purlins have more or less some geometric 
imperfections. These geometric imperfections may have influence on the performance 
as well as the failure mode of the purlin. In this section finite element analyses are 
presented, which consider the initial geometric imperfections produced by purlin 
self-weight. To take account the initial geometric imperfections, each run involves two 
steps. The first step is to obtain the initial geometric imperfections, for which a linear 
analysis is conducted. Figure 9 shows a typical geometric imperfection of a purlin with 
vertical and lateral displacement contours. The second step is to obtain the 
load-displacement curves of the purlin under the uplift loading, which is done by taking 
into account both geometrical and material nonlinearities using an arc-length algorithm 
as described in the preceding section. 

 
Figure 10 shows the load-displacement curves of the imperfection purlin of length L 

= 4000 mm for three different rotational spring stiffness values. Comparing Figure 10 
with Figure 3, almost no difference can be found. The reason for this is because for a 
short length purlin, the deflections generated by the purlin self-weight are rather small. 
Hence, the initial geometric imperfections have almost no influence on the 
load-displacement curves. This is also demonstrated by the deformed shapes plotted in 
Figure 11. As the purlin length increases, the deflections of the purlin due to its 
self-weight also increase. Figure 12 shows the load-displacement curves of the 
imperfect purlin of length L = 7000 mm for three different rotational spring stiffness 
values. Interestingly, the load-displacement curves for k = 300 N/rad and k = 750 N/rad 
are found to be almost the same as those shown in Figure 5. However, the 
load-displacement curve for k = 0 is found quite different from that shown in Figure 5, 
not only in terms of the failure load but also in terms of the curve shape in which the 
horizontal displacement is actually deformed in an opposite direction. When the initial 
geometric imperfection is taken into account, the purlin is failed by a lateral-torsional 
buckling, instead of the plastic failure found in the perfect purlin. The critical load is 
found to be greater than the critical load but lower than the failure load of the 
corresponding perfect purlin. The reason for this is because the initial deformation of the 
imperfect purlin, which is not favorable to the lateral-torsional buckling. Figure 13 shows 
the deformed shapes of the imperfect purlins, which shows that the purlin of k = 0 has a 
severe twisting deformation, whereas the purlin of k = 300 N/rad or k = 750 N/rad has a 
very similar deformed shape as that shown in Figure 6. This indicates that with the 
increase of the purlin length, the initial geometric imperfections may have important 
influence on the purlin performance and failure mode if the rotational restraint is not 
strong enough. This is further demonstrated by the results shown in Figures 14 and 15 
for the purlin with a length of 1000 mm, showing that the failure load and failure mode of 
the purlin with k = 0 are quite different from those shown in Figures 7 and 8, 
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respectively. 
Figure 16 shows a comparison of the failure loads of the purlins with and without 

considering the initial geometric imperfections. It can be seen from the figure that the 
failure load in all cases decreases with the increase of purlin length. Also, it can be seen 
from the figure that the influence of the initial geometric imperfections on the failure load 
increases with the purlin length but decreases with increased rotational spring stiffness. 
In the practical design, one is more interested in the moment capacity rather than the 
failure load. Figure 17 shows the variation of the moment capacity of the purlin with its 
length, in which the moment capacity is calculated directly based on the failure load and 
purlin length using the simple formula for beams, i.e. M = qL2/8. Interestingly, when the 
load is plotted using its moment, it is found the failure moment does not change very 
much with the purlin length for the perfect beams. This indicates that the failure moment 
of a purlin subjected to an uplift load is almost independent of its length. When the initial 
geometric imperfection is taken into account, however, the failure moment of the purlin 
with no rotational spring restraint still decreases with the increase of the purlin length.    
 
5. VALIDATION OF THE MODEL 
 

The present nonlinear finite element model is validated using the experimental data 
reported in (Hancock 1990; Rousch 1997), in which the dimensions of the zed-section 
purlin analyzed are web depth h = 202.8 mm, upper flange width b1 = 80.7 mm, lower 
flange width b2 = 72.5 mm, lip length c = 21.5 mm, and thickness t = 1.5 mm. The 

material properties are Young’s modulus E = 200 GPa, Poisson’s ratio μ = 0.3, and 

yield stress σy = 450 MPa. The torsion restraint provided by the sheeting is taken as 

0.023 N/mm2, as provided in (Hancock 1990; Rousch 1997). The loading condition and 
boundary conditions employed are exactly the same as those used in preceding 
sections. Figure 18 shows the comparisons of the finite element analysis and 
experimental measurement results. It can be seen from the figure that, for the lateral 
displacement at the lower flange-web junction the finite element analysis results 
compare closely with those obtained in the test. However, for the vertical displacement 
at the upper flange-web junction the finite element analysis results are a little higher 
than those obtained in tests. This is probably due to the influence of the sheeting 
bending stiffness, which is not taken into account in the FEA model, but in the test it may 
take some loading. Nevertheless, in overall, the FEA predictions agree well with the test 
data. This indicates that the idealized boundary conditions proposed in the present 
study are able to represent the standard two-hole cleat support conditions used in 
practice.   
 
6. CONCLUSIONS 
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This paper has presented a numerical investigation on the influence of the 
rotational spring stiffness and initial geometric imperfections on the performance of 
cold-formed steel purlins under the action of uplift loading using nonlinear finite element 
analysis methods. From the results obtained, the following conclusions can be drawn. 

The rotational spring stiffness has significant influence on the performance of the 
purlin. Not only can it increase the failure load but also can change the failure mode of 
the purlin. 

For the purlin with strong rotational spring restraint, the failure of the purlin is mainly 
controlled by the buckling. However, due to the influence of the deformations and 
material yielding prior to the buckling, the failure load is generally less than the critical 
load obtained directly from the linear buckling analysis. 

For the perfect purlin with no rotational restraint, the failure of the purlin is mainly 
due to the plastic bending failure occurring in the plane of minor axis. However before 
the failure, the purlin undergoes a lateral-torsional buckling.  

The initial geometric imperfections produced by purlin self-weight have significant 
influence on the performance of medium and long length purlins with no or low rotational 
spring stiffness. The initial geometric imperfection not only reduces the failure load but 
also changes the failure mode of the purlin from a plastic failure to a lateral-torsional 
buckling failure. However, for short length purlins or purlins with strong rotational spring 
restraint the influence of the initial geometric imperfections on the purlin performance 
can generally be ignored. 

The failure load of the purlin decreases with the increase of purlin length. However, 
the failure moment calculated from the failure load is almost independent of the purlin 
length if the initial geometric imperfections can be ignored. 

The comparison of the finite element analysis and experimental measurement 
results has demonstrated that the idealized boundary conditions proposed in the 
present study are able to represent the standard two-hole cleat support conditions used 
in practice. 
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Table 1 Comparison of critical buckling loads and plastic failure loads. 

L 

(mm) 

k = 0 k = 300 N/rad k = 750 N/rad 

Failure 

load 

(kN/m) 

Buckling 

load (kN/m) 

Failure 

load 

(kN/m) 

Buckling 

load (kN/m) 

Failure 

load 

(kN/m) 

Buckling 

load (kN/m) 

4000 0.910 0.933 1.65 2.80 2.01 3.52 

7000 0.280 0.130 0.533 0.722 0.676 0.935 

10000 0.141 0.042 0.250 0.324 0.331 0.420 

  

393



 

(a) (b) 

Fig.1 (a) Purlin-sheeting system and (b) the analysis model used. 

 

 

 

 

(a) 
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(b) 

Fig.2 (a) Boundary conditions used in the analyses and (b) FE mesh of a half beam 

model (L/2 = 2000 mm). 
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Fig.3 Load-displacement curve of purlin with different rotational spring constants 

(L=4000 mm). 
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Fig.4 Deformed shape of purlin at failure point with longitudinal stress contour (L = 4000 

mm). (a) k = 0, (b) k = 300 N/rad, and (c) k = 750 N/rad. 
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Fig.5 Load-displacement curve of purlin with different rotational spring constants 

(L=7000 mm). 

 

Fig.6 Deformed shape of purlin at failure point with longitudinal stress contour (L = 7000 

mm). (a) k = 0, (b) k = 300 N/rad, and (c) k = 750 N/rad. 
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Fig.7 Load-displacement curve of purlin with different rotational spring constants 

(L=10000 mm). 

 

Fig.8 Deformed shape of purlin at failure point with longitudinal stress contour (L = 

10000 mm). (a) k = 0, (b) k = 300 N/rad, and (c) k = 750 N/rad. 
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(a)         (b) 

Fig.9 Initial geometric imperfection used in analysis. (a) Vertical displacement contour 

and (b) lateral displacement contour (L = 4000 mm, k = 300 N/rad). 
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Fig.10 Load-displacement curve of imperfection purlin with different rotational spring 

constants (L = 4000 mm). 
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Fig.11 Deformed shape of imperfection purlin at failure point with longitudinal stress 

contour (L = 4000 mm). (a) k = 0, (b) k = 300 N/rad, and (c) k = 750 N/rad.  

 

-150 -100 -50 0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Displacement, mm

U
D

L
, 

k
N

/m

 

 

Vertical, k=0

Horizontal, k=0

Vertical, k=300 N

Horizontal, k=300 N

Vertical, k=750 N

Horizontal, k=750 N

 

Fig.12 Load-displacement curve of imperfection purlin with different rotational spring 

constants (L = 7000 mm). 
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Fig.13 Deformed shape of imperfection purlin at failure point with longitudinal stress 

contour (L = 7000 mm). (a) k = 0, (b) k = 300 N/rad, and (c) k = 750 N/rad. 
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Fig.14 Load-displacement curve of imperfection purlin with different rotational spring 

constants (L = 10000 mm). 
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Fig.15 Deformed shape of imperfection purlin at failure point with longitudinal stress 

contour (L = 10000 mm). (a) k = 0, (b) k = 300 N/rad, and (c) k = 750 N/rad. 
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Fig.16 Variation of failure load of purlin with its length. 
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Fig.17 Variation of failure moment of purlin with its length. 
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Fig.18 Comparison of FEA results with experimental data. 
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