
 
 
 
 

Evaluation of wind fragilities of existing multi-story shear frames 
using maximum a posteriori estimation 

 
Vincent Z. Wang1),*, John D. Ginger2), and David J. Henderson3) 

 
1), 2) School of Engineering and Physical Sciences, James Cook University, Townsville, 

Queensland 4811, Australia 
3) Cyclone Testing Station, James Cook University, Townsville, Queensland 4811, 

Australia 
* E-mail: vincent.wang@jcu.edu.au 

 
 
 

ABSTRACT 
 

     Wind fragility analysis provides a quantitative instrument for delineating the safety 
performance of civil structures under hazardous wind loading conditions such as 
cyclones and tornados. It has attracted and would be expected to continue to attract 
intensive research spotlight particularly in the nowadays worldwide context of adapting 
to the changing climate. One of the challenges encumbering efficacious assessment of 
the safety performance of existing civil structures is the possible incompleteness of the 
structural appraisal data. Addressing the issue of the data missingness, the study 
presented in this paper forms a first attempt to investigate the feasibility of using the 
expectation-maximization (EM) algorithm and Bayesian techniques to predict the wind 
fragilities of existing civil structures. A numerical example of a multi-story shear frame is 
introduced with the wind loads derived from a widely used power spectral density 
function. Specifically, the application of the maximum a posteriori estimates of the 
distribution parameters for the story stiffness is examined. 
 
1. INTRODUCTION 
 
     From Cyclone Tracy in Darwin 1974 (Walker 1975) to Cyclone Yasi in North 
Queensland 2011 (Boughton et al. 2011), from Hurricane Katrina in New Orleans 2005 
to the most recent Oklahoma tornado, civil engineering community kept being reminded 
in a hard way of the necessity of furthering the state of the art of design, construction, 
and maintenance of structures that are resilient to hazardous wind loads. Among 
various fast growing techniques, wind fragility analysis provides a quantitative 
instrument for dealing with the inherent uncertainty, and thus helps mitigate to some 
extent the risks associated with hazardous wind events (see, for example, Lee and 
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Rosowsky 2006, and Rocha et al. 2011). 
     The performance of civil structures subject to hazardous wind loads can be 
assessed in a destructive way. Typically, this is achieved by loading corresponding 
scaled model structures, or full-scale model structures where appropriate, until one or 
more limit states of interest are reached. Destructive testing, if meticulously designed 
and conducted, could offer arguably the most straightforward mechanism through 
which the response of structures in reality can be studied. Alternatively, more and more 
nondestructive testing procedures including structural health monitoring techniques 
(Chang 1997-2011; Chan and Thambiratnam 2011) have recently be formulated to 
carry out the performance assessment in such a way that no substantive damage will 
be introduced to the structures being tested, and even the interruption to the everyday 
operations relevant to the structures will be kept to a minimum. 
     As far as nondestructive testing procedures are concerned, a concomitant issue is 
that sometimes not all the structural appraisal data that are supposed to be collected 
actually turn out to be collected (Wang et al. 2013). The reasons for this include data 
acquisition system breakdowns, signal transmission errors, and vandalism and 
sabotage activities, to name but a few. Thereby, the challenge here is firstly how wind 
fragilities of an in-service structure can be evaluated when only incomplete appraisal 
data for the structure are available, and secondly, in terms of the final wind fragility 
evaluation results, how to achieve in an incomplete-data scenario a level of accuracy 
comparable (at least from some practical point of view) to that exhibited in the 
complete-data scenario. 
     The paper is organized as below: The second section is from a frequentist 
perspective, and a multi-story shear frame is used as an example to introduce some 
expectation-maximization (EM) algorithm (Dempster et al. 1977; Wu 1983; Meng and 
van Dyk 1997) based wind fragility evaluation procedures. The procedures are then 
validated by a comparison between the wind fragilities obtained in the incomplete-data 
scenario and those in the corresponding complete-data scenario. The potential of a 
Bayesian approach for wind fragility evaluation is then explored in the third section, 
followed by some concluding remarks. 
 
2. WIND FRAGILITY EVALUATION USING THE EM ALGORITHM: 
IMPLEMENTATION AND VALIDATION 
 
      As the main objective of this study is to evaluate the wind fragilities using 
incomplete structural appraisal data, an established, representative wind load model in 
the literature (Soong and Grigoriu 1993; Simiu and Scanlan 1996) is chosen to 
synthesize the time varying wind loads. For the ease of reference and the 
completeness of presentation, the formulas and parameters used for the wind load 
synthesis are reviewed and reproduced below. 
     The power law is applied to determine the mean wind velocity hu  at the height h , as 

in Eq. (1) (Simiu and Scanlan 1996): 
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Fig. 1. One-sided PSD (upper subfigure) and time history (lower subfigure) of the wind 
induced excitation force at the roof level (i.e., 15 mh ) 

 
 
where ru  is the mean wind velocity at the reference height rh , and α  is a constant. 

Throughout the paper, the reference height rh  is taken to be 10 m with the 

corresponding mean wind velocity ru  being 50 m/s, and the constant exponent α  is 

assumed to be 1/7. At a given height of h ,  G ω , the one-sided power spectral density 

(PSD) function of the wind induced excitation force acting at a surface area A  normal 
to the direction of the wind, is shown by Eq. (2) (Soong and Grigoriu 1993; Simiu and 
Scanlan 1996): 
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where ω  is the angular frequency; ρ  is the air density; *u  is the friction velocity; and 

dC  is the drag coefficient. In this study,  210 mA ,  31.25 kg/mρ , * 3.75 m/su , and 

d 1.5C . 
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Fig. 2. Examples of the displacement time histories obtained at the first floor level 
(upper subfigure), the second floor level (middle subfigure), and the roof level (lower 

subfigure) 
 
Table 1. An example of the incomplete structural appraisal data 

Story ID Incomplete structural appraisal data for the story stiffness (×107 N/m) 

1 

1.7843; 1.8050; NA; 1.4833; NA; 2.0190; 1.8119; 2.0233; NA; 1.6220; 

1.0276; NA; NA; NA; NA; 2.0829; 1.8250; 1.6292; NA; NA; 

0.8409; 1.3106; 1.7182; NA; 1.6078; 1.7673; 1.5995; NA; 0.7471; NA. 

2 

1.2363; 1.6302; 1.2494; 1.8557; 1.0746; 1.1058;  NA; NA; 0.7130; NA; 

1.6557; 1.4519; 1.4944; 0.9117; 1.7041; 2.1901; 1.3980; 1.4777; 1.4856; 1.0454; 

NA; 1.6080; NA; 1.4439; NA; 1.7750; NA; 1.8832; 1.4319; NA. 

3 

NA; 1.7167; 1.0266; 1.7964; 0.9410; 1.5674; 1.8447; 1.4013; 1.2851; 1.7263; 

1.2698; 0.7939; 2.1242; 1.9900; 1.7958; NA; 2.0807; NA; 1.0034; 1.8905; 

NA; 2.0350; NA; 1.8023; NA; 1.7116; 1.6808; NA; 0.7966; NA. 

Note: An “NA” denotes a missing data point. 
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Fig. 3. Comparisons of some selected estimates of (a) the mean and (b) variance of 2K  

in the complete- and incomplete-data scenarios 
 
 
     Take a three-story shear frame as an example. Suppose that the shear frame can 
be modeled as a linear three-degree-of-freedom (DOF) system with its mass evenly 
lumped at the three floor/roof levels. Further assume that the shear frame has a 
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Fig. 4. Estimated JPDF of 1K  and 2K  based on the averages of the relevant maximum 

a posteriori estimates 
 
Table 2. Estimated wind fragilities in Cases I and II 

Case ID Estimated wind fragilities 

I 0.421; 0.500; 0.506; 0.478; 0.585; 0.637; 0.516; 0.573; 0.490; 0.474. 

II 0.422; 0.321; 0.451; 0.510; 0.520; 0.380; 0.493; 0.414; 0.430; 0.526. 

 
 
uniform story height of 5 m. At the roof level, the one-sided PSD function for the wind 
induced excitation force, together with a corresponding time history, is illustrated in Fig. 
1. Each story mass is considered as a deterministic quantity with its value equal to 
2,000 kg, while a common trivariate normal distribution with all the three means, three 
variances, and six covariances respectively taken to be 1.5×107 N/m, 2.025×1013 N2/m2, 
and 1.0125×1013 N2/m2 is used to simulate both the complete and incomplete structural 
appraisal data for the story stiffnesses. Also, denote the first, second, and third story 
stiffnesses by 1K , 2K , and 3K , respectively. Fig. 2 shows an example of the 

displacement time histories obtained at the floor/roof levels. In the incomplete-data 
scenario, the missingness pattern is assumed to follow the missing-completely-at-
random manner (Heitjan and Basu 1996), and a probability of missingness of 0.3 is  
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Fig. 5. Contour plot of the estimated JPDF shown in Fig. 4 
 
Table 3. Estimated wind fragilities in Cases III and IV 

Case ID Estimated wind fragilities 

III 0.739; 0.684; 0.780; 0.622; 0.676; 0.697; 0.819; 0.725; 0.708; 0.657. 

IV 0.297; 0.173; 0.324; 0.193; 0.216; 0.118; 0.286; 0.251; 0.261; 0.183. 

 
 
assigned to each appraisal data point. As an example, Table 1 lists some appraisal 
data in the incomplete-data scenario. 
     For the fragility analysis here, failure of the shear frame is defined as the situation 
when the maximum inter-story relative displacement exceeds a pre-selected threshold 

mU , and the fragility is quantified by the probability of this failure event. In this section, 

mU  is chosen to be 0.01 m. To deal with the incomplete appraisal data for the story 

stiffness, the EM algorithm is implemented through the statistical computing 
environment R (R Core Team 2012) and the package norm (Novo and Schafer 2012). 
To validate results obtained in the incomplete-data scenario, the following scheme is 
designed: In the incomplete-data scenario, the 1,000-time Monte Carlo simulation is 
independently carried out ten times, yielding a sample containing ten realizations of the 
fragility. In parallel, another fragility sample is constructed in the complete-data 
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scenario. The null hypothesis that these two samples are from a same population is 
then tested against the alternative hypothesis that their populations are different from 
each other. Accordingly, one may expect that the null hypothesis cannot be rejected if 
the procedures used to deal with the appraisal data missingness are deemed effective. 
The above validation scheme leads to the estimates illustrated in Fig. 3 and the 
fragilities shown in Table 2, where Cases I and II respectively correspond to the 
complete- and incomplete-data scenarios. For the data in Table 2, the null hypothesis 
cannot be rejected based on the two-sample Kolmogorov-Smirnov test at a commonly 
used significance level of 0.05. 
 
3. AN ILLUSTRATIVE EXAMPLE FOR WIND FRAGILITY EVALUATION BASED ON 
BAYESIAN TECHNIQUES 
 
     Bayesian techniques along with their application to civil engineering form an 
intriguing family of procedures thanks to their general capacity of systematically taking 
into account cognate prior information. As a preliminary attempt to explore the potential 
application of Bayesian techniques to the analysis of wind fragilities with incomplete 
structural appraisal data, a normal inverse Wishart distribution, which is a conjugate 
prior distribution in this context, is selected to model the mean vector and the 
covariance matrix of the story stiffnesses. Specifically, Figs. 4 and 5 describe the 
estimated joint probability density function (JPDF) of the story stiffnesses 1K  and 2K . 

This JPDF results from the averages of the maximum a posteriori estimates of the 
means, variances, and covariances of the story stiffnesses. With the threshold mU  

chosen to be 0.008 m and 0.012 m in Cases III and IV respectively, the estimated wind 
fragilities in the incomplete-data scenario are listed in Table 3. It can be observed that 
with a more stringent threshold in Case III than in Case IV the resulting wind fragilities 
increase considerably. 
 
4. CONCLUDING REMARKS 
 
     The study presented in this paper lays the groundwork for further investigation into 
the appropriate incorporation of relevant prior information into the evaluation of the 
safety performance of civil structures against hazardous wind loads. The prior 
information under the current circumstances could come from code specifications, 
design experience, and previously conducted structural appraisal activities, among 
other sources. 
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