
  

A multiscale framework for lubrication analysis of bearings  
with textured surface 

 
*Leiming Gao1), Gregory de Boer2) and Rob Hewson3) 

 
1), 3) Aeronautics Department, Imperial College London, London, SW7 2AZ, UK 
2) School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, UK 

1) leiming.gao@gmail.com 
 

ABSTRACT 
 

     In this paper a heterogenous multiscale method is applied to model the 
Elastodhydrodynamic Lubrication (EHL) problem with small scale topographical 
features. The small scale fluid-structure interaction (FSI) model couples both the fluid 
flow between the bearing surfaces and the elastic deformation of the solid bearing 
material. The large scale geometry is a 2D cylinder line contact for journal bearings of 
the order of a centimeter in size, and the small scale topography is a uniformly 
distributed pocket of the order of micrometers in size. In the results, the effects of 
topographical features on the bearing’s lubrication and friction performance are 
presented and the importance of the role of cavitation at the small scale feature is 
highlighted.  
 
KEYWORDS: Bearing Surface Texture, Heterogenous Multiscale Method, Fluid 
Structure Interaction 
 
 
1. INTRODUCTION 
 
     In engineering, bearings benefit from a full fluid film between the two bearing 
surfaces, so that the bearing can sustain load with low friction and wear by avoiding 
solid-solid contacts. At high loads the pressures result in a deformation of the bearing 
surface, resulting in EHL (Hamrock 1994), such a change in the geometry consequently 
changes the fluid domain and the fluid pressure.  
     Surface texture has gained increasing interest in bearings recently (de Kraker 2007, 
Sahlin 2007 and Hewson 2011), with experimental investigations showing that changes 
to the bearing surface can lead to an improved load carrying capacity and low friction 
(Etsion 1999). The size of bearing surface topography and that of bearing itself are 
generally in different order of magnitudes presenting a challenge to the deterministic 
numerical simulation.  
     In this paper a heterogenous multiscale method (E 2003 and Gao 2012) is 
introduced to the numerical analysis of the EHL, with the influence of micro-topological 
features highlighted. This numerical model couples the fluid flow between the bearing 
surfaces, and the elastic deformation of the solid at two scales. As the explicit 
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governing equation of fluid flow, the pressure gradient and mass flow rate relationship, 
is obtained from a homogenised small scale solution, along with consideration of the 
local deformation of the bearing surface. While the non-local deformation of the bearing 
surface is considered at the large scale. This relationship is subsequently used to solve 
the global pressure in the large scale simulation. The small scale simulation accounts 
for the micro flow and local deformations in a unit surface cell. The Navier-Stokes 
equations, together with the interaction with the solid bearing are solved using the 
Finite Element package (COMSOL Multiphysics). Fluid cavitation is considered at the 
small scale within this work, via a predefined threshold cavitation pressure (Sahlin 
2007). The fluid is assumed a mixture of liquid and vapour whose density varies 
depending on pressure. This approach and the local cavitation model raises some 
interesting questions regarding the near-periodic assumptions underlying the 
Heterogeneous Multiscale Method. 
 
 
2. NUMERICAL METHODOLOGY 
 

2.1 Heterogeneous Multiscale Method (HMM) 
      
HMM is a general technique that has been applied to a number of problems where 
there is a distinct separation of scales (E 2003). It assumes that the large scale model 
is known, in which some terms are explicitly unknown, and chooses a conventional 
large scale solver as the starting point. In the process of implementing this large scale 
solver, small scale numerical simulations are used to replace function evaluations that 
involve unknown quantities. The key to the application of the HMM approach proposed 
here is how the two scales are coupled. 
     For this particular application, the small scale results provide the homogenised 
pressure gradient-mass flow rate relationship, while the large scale applies this solution 
via a global pressure distribution and conservation of mass. The bearing surface 
deformation is considered at both scales, local scale as part of the FSI solution and the 
large scale due to non-local deformations of the problem. 
 
 

       
 

(a)                                                           (b) 
 

Fig. 1 (a) Global geometry of the cylinder bearing in line contact;  
(b) micro pocket geometry of a unit cell on the stationary wall surface. 
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2.2 Geometry and Materials 
 
     The global geometry of the lubrication model is a 2D cylinder bearing in line contact. 
The cylinder is assumed to rotate with ideal smooth surface and the plane is stationary 
with micro-pocket surface textures, as shown in Fig. 1. The material of cylinder is 
assumed to rigid and that of the plane is linearly elastic with Young’s modulus of 0.5 
GPa and Poisson’s ratio of 0.4. The radius of the cylinder (r) is 25 mm and the 
corresponding sliding speed (U) is 2 m/s. The micro-pocket length (L) ranges between 
20 μm and 200 μm and the depth (d) between 5 μm and 30 μm. 
 

2.3 Large Scale Simulation 
 
     The large scale simulation describes the fluid-structure interaction in the global 
lubrication domain, where the fluid pressure are solved simultaneously with the bearing 
elastic deformation. The difference between the current study and classic EHL is that 
the governing equation for pressure is a homogenised equation from the small scale 
simulations, rather than the Reynolds equation, expressed as 
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The pressure gradient (
ୢ୮

ୢ୶
) is a homogenised function of the cell inlet pressure (p), 

mass flow rate (q) and locally undeformed gap (g). The three parameters (p, g, q) in the 
right-hand-side of Eq. (1) are the only large-scale-derived parameters that influence the 
small scale flow. The large scale boundary conditions used to solve Eqs. (1) and (2) is 
that the pressure at the global inlet and outlet boundaries is equal to zero 
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Once the pressure distribution is obtained, the bearing load is calculated as 
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The shear stress (τ) distribution is obtained through interpolation of corresponding 

small scale shear stress and the friction coefficient (μ) is calculated as 
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2.4 Small Scale Simulations 

      
The small scale problem is described by the flow equations and those governing the 

elastic deformation of the small scale features. The coupling is facilitated through the 
application of the Arbitrary Largrangian Eularian (ALE) method (COMSOL 
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Multiphysics). 
     The isothermal, laminar flow is governed by the compressible Navier-Stokes 
equations. 
 

ܝሺߩ ∙ ܝሻ ൌ  ∙ ሾെ۷  ܝሺߟ  ሺܝሻሻ െ ߟ2 3ሺ ∙ ⁄ሻ۷ܝ ሿ                          (6) 
 

 ∙ ሺܝߩሻ ൌ 0                                                          (7) 
 

with  denotes the fluid density, u the velocity vector, p the fluid pressure,  the fluid 
viscosity, I the unit tensor. The boundary conditions are shown in Fig. 1(b). The lower 
boundary CD (Fig. 1(b) is a sliding wall. The upper fluid structure interface is a no slip 
boundary. Near-periodic boundary conditions apply on the AD and BC boundary in 
terms of mass flow rate (product of velocity and density) scaled by local strain due to 
small scale deformation and a uniform pressure jump, p. 
     In the solid domain in Fig. 1(b), a plain strain model is applied. The strain-stress 
relationship is described by the following equations 
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where  is normal stress. The top boundary IJ is fully constrained. The vertical 
boundary AI and BJ is constrained in the x (normal) direction only. The FSI boundary 
(marked in Fig. 1(b) is free and subject to the fluid pressure. The equivalent local 
pressure p to represent the unit cell pressure is defined as the average pressure across 
the cell 
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Details can be found in Gao (2012). 

     
2.5 Separation of the Deformation Coefficient Matrix 

 
     The bearing surface deformation is expressed as 
 

 ઼ ൌ ۹ ൈ  (11)                                                           ܘ
 

The displacement influence coefficient matrix (K) is a n-by-n matrix where n is the 
number of large scale mesh grid. The diagonal terms and non-diagonal terms are 
separated from the total deformation matrix that 

  
۹ ൌ ۹  ۹                                                        (12) 

 
where, diagonal matrix (K1) is composed of all diagonal elements of the total coefficient 
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matrix (K). Physically its element Kii means the displacement at point i due to a unit 
local pressure pi (i.e. load per unit length for line contacts). The non-diagonal matrix 
(K2) is the total coefficient matrix (K) with the diagonal elements removed. Physically its 
elements Kij define the  displacement at point i due to non-local pj (for j ് i). So that the 
total deformation in Eq. (11) are accounted for separately at both scales 
 

઼ ൌ ۹ ൈ ܘ  ۹ ൈ  (13)                                                   ܘ
 

The non-diagonal terms ሺ۹ ൈ  .ሻ account for the non-local large scale deformationܘ
The diagonal terms ሺ۹ ൈ  .ሻ account for the local deformationܘ
     Since a small scale feature is regarded as a point at the large scale, the local 
deformation is assumed as a spring column (as described by the deformation matrix). 
Thus, an equivalent height of the solid domain (t ) is introduced in order to ensure that 
the local deformation in the small scale simulations is the same as the column 
deformation obtained from the diagonal matrix K1. 
 

t ′ ൌ kଵ ൈ E′                                                           (14) 
 

where, k1 represents the elements in matrix K1. E is the equivalent elastic modulus, for 
the plain strain model 
 

E′ ൌ
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ሺଵାνሻሺଵିଶνሻ
                                                         (15) 

 
where E and  is the Young’s modulus and Poisson’s ratio of the bearing material 
respectively. The local deformation calculated using the equivalent material height t’ is 
consistent with the diagonal terms ۹ ൈ  .in Eq. (13) ܘ
 

2.6 Cavitation Model  
 
     The lubricant is assumed to a mixture of liquid and gas[6]. When the fluid pressure 
drops below certain saturation pressure (zero in the current study) cavitation occurs 
that some gas resolved in the fluid will comes out. The threshold cavitation pressure is 
defined as െ0.03 MPa. The fraction of the liquid and gas mixture is defined through the 
inverse tangent function 
 

ߙ ൌ 0.5 ൈ ሺ1  tanିଵ ାଶൈଵ
ర
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ሻ                                            (16) 

 
So that the viscosity and density of the mixture is expressed as 
 

ߟ ൌ max	ሺ10ିହ, ߟ ൈ                                                 (17)	ሻߙ
 

ߩ ൌ max	ሺ0.1, ߩ	 ൈ  (18)                                               ( ߙ
 

where, ߟ and ߩ are the viscosity and density of Newtonian fluid with values chosen as 
0.1 Pa s and 870 kg/m3 respectively. 
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3. RESULTS AND DISCUSSION 
 
     The variables are transformed to the non-dimensional forms for convenience of 
numerical computing, in small scale simulations 
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At the large scale x is non-dimensionalized by the Herzian line contact radius 
 

ܺ ൌ ݔ ට଼௪
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The load is fixed to 2500 N in the current study for all cases. The large scale 

calculation domain is X = [–4, 2], and the number of mesh point n = 120. 
 
 
 

 
 

(a)                                                                           (b) 
 

 Fig. 2 (a) The large scale fluid pressure and film thickness distributions;  
(b) The large scale viscosity and density variation.  (L = 200 μm, d = 20 μm) 

 
 
 

     The large scale solutions in terms of pressure, film thickness and fluid viscosity and 
density are the average value of the corresponding local small scale simulations. The 
fluid pressure and film thickness distributions at the large scale are shown in Fig. 2(a), 
with cell length of 200 μm and depth 20 μm. The large scale gap deforms from the 
unloaded geometry with a flattened region in the middle of contact under a maximum 
pressure of 3.1 MPa. The average viscosity and density variations at large scale are 
plotted in Fig. 2(b). The large scale cavitation occurs at the outlet boundary of the 
global flow, where the average density of the mixture drops from a liquid density down 
to nearly a gas density, so does the viscosity. If we look at this cavitation zone at the 
small scale, the variations of pressure and density (or viscosity) fraction in the pocket 
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cell at six local positions are presented in Fig. 3. The pressure drops gradually along 
the global flow direction starting from around 0.2 MPa (equivalent local pressure) down 
to the cavitation pressure of – 0.03 MPa. Since the small scale pocket itself is a 
diverge-converge geometry the pressure drops firstly at the diverged edge and then 
transfers to the converged edge. It is interesting to note that at some locations the large 
scale average pressure is still positive but cavitation occurs at the small scale; for 
example, at X = 0.9 (red) and 0.95 (green), the large scale pressure is above zero and 
the average density (or viscosity) has not dropped yet (as seen in Fig. 2(b), while the 
small scale pressure drops down to – 0.02 MPa and the fluid density drops to about 30-
40% of that of full liquid fluid, as shown in Fig. 3. 

The friction coefficient and minimum film thickness are presented with different cell 
depth to length ratio in Fig. 4. For short cell length 20 μm and 50 μm the friction 
 
 
 

 
 

(a)                                                                     (b) 
 

Fig. 3 Small scale pressure (a) and density fraction; 
 (b) variations at different local points near the large scale outlet zone 

 

 
 

(a)                                                                     (b) 
 

Fig. 4 (a) The friction coefficient (μ) against the cell depth to length ratio;  
(b) The minimum film thickness against cell depth 
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coefficient seems to depend on the cell depth to length ratio and the ratio above 0.2 
provides lower friction coefficient. While for large cell length 100 μm and 200 μm it 
seems that the deeper cell results in the lower friction coefficient. The film thickness is 
reduced in bearings with textured surface and the larger cell length results in the 
smaller minimum film thickness. 
 
 
4. CONCLUSIONS 
 
     A heterogeneous multiscale model is developed for the fluid-structure interaction in 
bearing lubrication with the bearing surface texture addressed. The full Navier-Stokes 
equations together with local elastic deformations are solved at the small scale. The 
elastic deformation of the bearing surface is considered at both the large and small 
scales, by decomposing the deformation influence matrix into the diagonal terms and 
non-diagonal terms (resolved at the small scale and large scale respectively). A 
pressure gradient and mass flow rate relationship links the two scales, which is 
homogenised via interpolation of the data from small scale solutions, and applies to the 
large scale domain.  
     Fluid cavitation is numerically simulated via a predefined function of the fluid density 
and pressure. It is explicitly modelled at the small and large scales, whereas it is only 
modelled at the small scale – the results of which pass to the large scale. The 
cavitation’s development at the large scale outlet zone is presented. It is observed that 
cavitation occurs at the small scale when the large scale equivalent pressure is still 
positive.  
     The friction performance is compared for different small scale geometries. It is 
observed that a large cell depth results in a low friction coefficient and also a low film 
thickness. For a journal bearing low friction coefficient is advantageous, however a 
small film thickness is often unwanted as it would reduce the boundary between the low 
friction EHL regime and that of the higher friction and wear mixed or boundary 
lubrication regime. The multiscale method described in the current study provides an 
approach that can be implemented in the optimization of the geometry of small scale 
features for bearing lubrication and potentially other FSI applications. The current 
multiscale model is in 2D and will be fully developed to 3D in our future work.  
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