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ABSTRACT 
 

     Open-loop control is an easy and well-known method to control the motion of 
mechanical systems. A special open-loop control technique is known under the notion 
shape control, when an elastic system follows a certain trajectory. In this paper we 
answer the question how to control the motion of flexible systems which are equipped 
with piezoelectric transducers as actuating control agencies and electrical resistances 
between their electrodes. As a special case, a slender beam is under consideration. 
Based on an extended version of the governing equations of motion of a beam within 
the framework of Bernoulli-Euler, we determine how to choose the configuration of the 
electric circuit and the values of its resistors and the proper value for the reference 
voltage, in order to annihilate deformations at several locations along the beam axis. A 
solution is derived by finding the influence functions of the external mechanical loads 
and of the piezoelectric patches. Mathematically, this corresponds to the solution of an 
inverse problem. The validity of the proposed method strictly holds in the static regime 
only, but it can be shown that structural vibrations can be approximately nullified as 
long as a certain non-dimensional parameters, containing the number and the 
capacitance of the piezoelectric patches, the sum of the resistors of the circuit and the 
excitation frequency, is small. Furthermore, an outlook for the practical realization of the 
proposed method is given. 
 
1. INTRODUCTION 
 
     Piezoelectric transducers are nowadays commonly accepted elements for sensors 
and actuators. The use of piezoelectric transducers can be divided into three different 
fields. First the indirect piezoelectric effect is exploited if the motion of an elastic system 
is to be controlled (actuation). Second, states of the system are monitored and 
observed by taking advantage of the direct piezoelectric effect (sensor). Third, energy 
might be transferred from the mechanical to the electrical domain or vice versa (energy 
harvesting). For a review the reader is referred to (Mason 1981), (Chopra 2002)  and 
(Crawley 1994).  
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     In the following of this contribution, we are interesting in beam- or plate type 
structures. Bonding piezoelectric transducers onto elastic frames or plates, the motion 
of flexible systems might be controlled by using advanced feedforward or feedback 
control algorithm (Irschik et al 1998), or their motion might be monitored by intelligently 
distributed the piezo-transducers (Krommer and Irschik 2013). Mechanical models for 
the physical interaction of piezoelectric patches bonded onto elastic beams have been 
developed by (Crawley 1987) and (Chandra 1993). 
     In this contribution we are concerned in controlling the displacement of beam-type 
structures, which are subjected to a certain load distribution. The motion of the elastic 
beam, which is modeled within the framework of Bernoulli-Euler, is also influenced by 
piezoelectric patches that are glued onto the surface. The electrodes are connected to 
resistances, whose other endings are either linked to ground, to the voltage source or 
to the electrodes of another transducer. By a proper design of the electric circuit 
(resistances) and the applied voltage source, one is able to annihilate the structural 
deformation at several locations (=sensor locations). The underlying theory for 
modeling beam-type structures within the geometrically linear domain, within the 
framework of the Bernoulli-Euler kinematics and the negligence of rotary inertia, is 
based on some preliminary works of our group (Krommer 2001), (Schoeftner and 
Irschik 2011) and (Schoeftner and Buchberger 2013). Based on these theories the 
influence functions of the external load and of the voltage acting across the electrodes 
of a piezoelectric patch are calculated. In order to cancel the lateral deformation at n  
locations, one has to control the voltage of n  piezoelectric actuators by solving an 
inverse mechanical problem. The voltage of only one actuator may be prescribed in 
practical applications, therefore the voltages of the other actuators are obtained by 
connecting the other actuators to the shunts, which cause a well-defined voltage drop if 
current flows through them. Then the resulting voltage values are between the 
reference signal and the electric ground. As a simple example, a clamped-free beam is 
considered. On its surface eight piezoelectric patches are glued, and the developed 
shape control theory with resistively interconnected shunts is validated. Furthermore, 
this theory is also verified by an experimental setup: it is shown that bending vibrations 
at the first resonance are significantly reduced. 
 
 
2. MODELING 
 
     In the following the governing equation of a laminated slender beam equipped with 
piezoelectric patch actuators is given. The width and the height of the patches are 
constant and read pb  and p 2p 1ph z z   (see the finite element model of the three-layer 
beam in Fig. 1). Within the framework of Bernoulli-Euler, the equation of motion reads 

0 , ,w xx zM w M q   (1) 

where 0 , , zw M q  are the lateral deformation, the bending moment and the external force 

load (see Schoeftner and Buchberger 2013). The mass per unit length is given by wM , 

which is the cross- section area multiplied by the density of each layer. 
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Fig. 1 Cantilever beam equipped with piezoelectric patch actuator (inner electrodes are 
grounded, external electrodes connected to a shunted circuit) 

 
For the bending moment the relation M 0, 31 mp p( ) ( ) ( ) 2xx nM x K x w x e z b V     holds, where 

MK  is the bending stiffness. The second term is the electrical part of the bending 

moment that is only present, when patch #n  is located at position x , i.e. 

a a p an n nx x x l x      holds. At anx x  and at a pnx x l  , the continuity relations holds 
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 (3) 

In words, the displacement and its spatial derivative, the bending moment and the 
shear force remain continuous. Since the voltage nV  cannot be prescribed 

independently in our case for each patch, one may derive additional differential 
equations from Kirchhoff’s voltage and current rule, which couple the mechanical (the 
displacement 0 ( )w x ) to the electrical domain (the patch voltage nV ) 
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 1 1 1 0,1, , 1,n n n n n nV R i V n N N       (4) 

and 
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 (5) 

Eq.(4) states that there is a voltage drop 1n nV V   in the direction of the electric current 

1n ni  , which is proportional to the resistance 1n nR  . Eq.(5) states that the difference of 

out- and ingoing current is equal to the current produced by the transducers. 
 
3. SHAPE CONTROL – ANNIHILATION OF BEAM VIBRATIONS 
 
     The solution for problems governed by Eqs.(1)-(5) is given by  

0 0
1

( ) ( ) ( ) ,
N

F Vn n
n

w x G x F G x V


   (6) 

where N  is the number of piezoelectric patches used for the actuation. The expression 
( )FG x  and ( )VnG x  describe the deformation of the beam at location x  due to a unit 

force load 0 1NF   and 1VnV  . They are called influence functions. The form in Eq.(6) 

holds, if the external load and the voltage is a sinusoidal excitation. Nevertheless, the 
influence functions can be easily computed in the static case for beam-type structures, 
when the time-derivatives in Eqs.(1)-(5) vanish. For the sake of simplicity, the reader is 
referred to (Schoeftner et al 2013b) for the solution of the static influence functions for 
various mechanical boundary conditions.  
    Assuming that one intends to annihilate the displacement at N different locations, i.e. 

0 s1( ) 0w x  , one may set up N  equations which read in matrix notation 

0 0 s1 0 s0 0

1 2

with ( ), , ( )

, , , .

T
F V N

T
N

W G F G V W w x w x

V V V V

     

   




 (7) 

The matrices of the influence functions ,F VG G  contain the impact of the load and of all 

piezoelectric patches on the deformation of the systems. Demanding that 0 0W   

should hold, one solves (7) for the voltage vectors 
1

0 .V FV G G F   (8) 

Since we are mainly interested in the practical realization of this idea, we skip the 
mathematical question, if and under which circumstances the inverse VG  of exists. 

Further investigation on this important topic will be postponed and treated in the future. 
     Since the necessary voltage vector is given by (8), one may easily calculate the 
resistances of the electric circuit and also its architecture (note due to the negligence of 

997



  

the time-derivative, the current through each resistor is equal 01 N N+1i i i   ). The 

prescribed voltage signal provided by the voltage supply is the maximum of the 
necessary patch voltages  0 1 2max , , , NV V V V  . Assuming a non-monotonically 

increasing or decreasing sequence for the patch voltages, the architecture of the 
resistive circuits and its relative resistance values, which connect the electrodes of the 
patches, is determined by the descending order of the patch voltages 

with .i j ij
i j k

j k jk

V V R
V V V

V V R


  


 (9) 

 
4. EXAMPLE 
 
     In this section, we show the correctness of our derived theory by a cantilever, which 
is equipped with 8N   piezoelectric patches. Consequently, the displacement at eight 
sensor locations will be annihilated. The length and the width of the beam is 0.5ml   
and p 0.05mb  . The material of the substrate is aluminum and that of the piezoelectric 

transducers is PZT-5A. The length of each patch is p 0.03ml  , the height of the 

substrate and of the patch 0.008msh   and p 0.0004mh  , respectively. The tip-load 

0 0.027NF   is realized by a solenoid attached at the free end of the beam (see Fig. 5). 

The additional mass of the solenoid has to be taken into account, reducing the first 
eigenfrequency from 26.5Hz (without consideration of the solenoid mass) to 18.8Hz . 
For the given external load, one calculates the necessary voltage vector from Eq.(8) 

 1 2, , , 6.76,5.56,4.99,3.80,3.24,2.04,1.48,0.28 V.T
NV V V V     (10) 

Obviously the voltage provided by the voltage supply is 0 6.76VV  . Substituting 

Eq.(10) into Eq.(9) one finds the proper ratio of the resistances for the electric circuit. 
Demanding the total resistance to be tot 20,000R   , one calculates the values given in 

Table 1.  
 

Table 1 Values for the resistances of the circuit ( tot 20,000R   ) 

resistance 
(unit) value resistance 

(unit) value resistance 
(unit) value 

 01 R  0  12 R  3552  23 R  1674 

 34 R  
3536   45 R  1656  56 R 3548 

 67 R
 1660  78 R 3544  89R   830 

 

Results for the static displacement are shown Fig.2. One can see that the deflection of 
the tip-loaded beam and of the voltage-loaded beam (with 0 6.76VV  and the 

resistances from Table 1) are approximately equal, but changed in sign. Superposing 
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both results, one finds the shape control results. It becomes clear from the figure below, 
that the displacement is exactly annihilated, as desired, at the 8 sensor locations (x-
mark symbol). 

 

Fig. 2 Static deflection 0 ( )w x  of a tip-loaded beam (light gray-only tip-force, black-only 

voltage load, dark gray-shape controlled beam) 
 
Next, we investigate if our shape control method can be also applied to time-harmonic 
loads. The displacement at 0.5x l  and at the free end x l  are shown in Fig.3. For 
low frequencies 0Hzf  , our feedforward control method works perfectly. For higher 

frequencies ( 75Hzf  ), our method fails. At the first resonance 1 18.8Hzf   the tip-

displacement is reduced from 0.24mm  to only 0.011mm ( 95% ). For higher frequencies 
or for the second eigenfrequency, vibrations may be even amplified. It can be shown 
that the shape control method is a well-working feedforward control technique in the 
dynamic regime, as long as the non-dimensional parameter 

total8CR   (11) 

is not much higher than one, see (Schoeftner and Buchberger 2013b). This means that 
the dynamic electrical equations (4) and (5) can be replaced by the static ones 
(disregard the time-derivatives, the expression total8CR   is the time-constant of the 

electrical part). In our example one calculates 1.52   with 18.8Hzf  . It is noted that 
in the simulation model, the clamped end is not assumed to be perfectly rigid. The 
boundary stiffness has been adjusted (see the configuration Fig.4), so that the first 
eigenfrequencies of the simulation model and of the experiment match. 
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Fig. 3 Frequency response 0ˆ (0.5 )w l  and 0ˆ ( )w l  for a resistive circuit with tot 20,000R    

when the cantilever beam is excited by the tip-force excitation (black), by the voltage 
actuation (light gray) and by both the voltage and the tip-force excitation (shape control-

gray) 
 
Our last task is to verify the shape control method. Fig.4 shows the experimental setup. 
One recognizes the beam (1) with its 16 piezoelectric patches (2) attached on the 
upper and lower sides. All the internal electrodes are linked to ground. Both external 
electrodes of the first, the second, the third,… patch on the lower and upper sides are 
kept at the same potential, but both are linked via resistances (5) as indicated in Fig.1. 
A laser displacement sensor (3) measures the tip-displacement. 
 

(1) cantilever beam with patches

(2) piezoelectric patches

(3) laser displacement sensor

(4) solenoid (shaker for tip-load)

(5) resistive circuit

(6) force sensor

(1)

(5)

(2)

(3)

(4)

(6)

 

Fig. 4 Experimental setup for verifying the shape control theory with resistive circuits  
 
Fig. 5 compares measurement results with simulation results, when the beam is excited 
at the first resonance 1 18.8Hzf   (solenoid force is measured, see (6) in Fig.4). After 

10s the controller is activated. The simulation shows that the harmonic displacement is 
strongly suppressed from 0.24mm  to 0.011mm . The experiment shows a similar 
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behavior: vibrations with amplitude of 0.27mm  are also attenuated 0.016mm (-94%), if 
the shape control method is turned on. A visualization of the results with the laser 
scanning vibrometer is shown in Fig.6. 

 

Fig. 5 Comparison of the transient response when the shape control method is 
activated at 10st   (above: measurement results, below: simulation results)  

 

shape control (0.016mm)uncontrolled (0.27mm)

harmonic excitation 18.8Hz

 

Fig. 6 Laser scanning vibrometer-visualization of the measured transient response with 
and without shape control 
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CONCLUSION 
 
     In this contribution a new method for shape control of beams is introduced. With the 
help of resistive shunts it is shown that it is possible to annihilate the deformation at 
certain locations along the beam axis, if only the voltage of one piezoelectric patch is 
be prescribed. The resulting voltage distribution for the remaining patches depends on 
the design of the resistive circuit. First, the basic equations for modeling of piezoelastic 
structures on beam-level are given. Then it is shown how to determine the proper 
voltage level for the actuation of the piezo-patches and to calculate the optimal values 
for the resistors of the circuit. This method is called shape control with resistive circuits. 
Then the theory is verified by a simple example, a cantilever beam is excited by the 
electromagnetic force of a solenoid at the free end. It is shown that the shape control 
method works perfectly in the static regime, but also approximately annihilates time-
harmonic vibrations. Finally, the theory is experimentally validated.  Results for the 
experiment and for the simulation model are compared, if the system is excited at the 
first resonance. It is shown that when the system is controlled (i.e. the shape control 
method is activated) vibrations can be significantly reduced (simulation: -95%, 
experiment: -94%). 
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