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ABSTRACT 
 

In this work, a new process of damage and impact detection on structures with 
piezoelectric active elements using acoustical wave diffraction patterns and 
Probabilistic Decision Tree (PDT) tree Support Vector Machine (SVM) architecture is 
presented. This active SHM approach uses permanently emission of selected non-
resonant Lamb waves into the structures and monitors a damage index (DI) relying on 
the recognition of amplitude disturbed diffraction pattern (ADDP). Based on this ADDP, 
a detection and localization approach is proposed. It exploits the measurements to train 
an original SVM clustering algorithm utilizing a specialized binary decision tree (SVM-
PDT) producing a posteriori probabilities of damage localization in a multi-class context. 
The proposed SHM procedure is illustrated on actual plates. 
 
 
1. INTRODUCTION 
 
     Advanced structures with self-capabilities have been intensively studied over these 
last four decades. These structures also called smart structures are emerging as a 
promoting way to improve the intrinsic and extrinsic characteristics of a structure. 
These intense research efforts represented the application of multidisciplinary 
monitoring and control methods to assess smart structures, seeking essentially safe 
operation, useful life extension, generally based on evaluation of their operational 
status, and eventually applying active control methods to ensure the required 
performance. 
Structural health monitoring (SHM) is an emerging technology to automate the 
inspection process to assess and evaluate the health condition of structures in real-time 
or at specified time intervals. SHM systems for smart structures may automatically 
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process data, assess structural condition, and signal the need for human intervention 
(Worden, et al., 2007). SHM technology involves multidisciplinary fields ranging from 
material, structure, signal processing, data mining, fracture mechanics, fatigue life 
analysis and more. It aims to detect, localize and evaluate the severity of damages. 
Recent surveys have shown that even reluctant industry areas are now convinced that 
SHM is the key technology to enable the transition from schedule-driven maintenance 
to condition-based maintenance (Chang, 2011).  
 
To perform damage monitoring, a variety of techniques have been developed. They 
could be classified into: passive or active and then into two sub categories: global or 
local. Passive SHM are techniques that only "listen" to the structure and infer its state 
by monitoring over time passive sensors. Although these methods have proved useful, 
their reliability could be increased by making them interacting with the structure. In this 
case, we speak about active SHM methods because actuators are used to interrogate 
the structure to enhance damage detection and localization. The extraction of damage-
sensitive features from measurements is a process that can encompass either physical 
modelling or data-driven methodologies to SHM, but is most powerful when it underpins 
the latter and is based on pattern recognition (Farrar & Worden, 2012). 
 
Ultrasonic inspection is well-established and widely used in several industrial domains 
as an efficient NDE technique. In fact, SHM can be viewed as embedded NDE. 
However, acoustic emission (AE) is a passive SHM method that could be prone to 
contamination by environmental noise (Su & Ye, 2009). One way to overcome this 
problem is to use an active method that generates specific signal processing to activate 
elastic waves that are greater than half the size of their wavelength in spite of the 
presence of environmental noises. In these active methods, two approaches could be 
considered: traveling waves or standing waves. And the interrogating is done on 
demand or continuously.  
A large number of waves based techniques exist for SHM. These techniques exploit 
surface acoustic waves (SAW) or guided waves in plates, shells, or tube-like structures, 
to localize acoustic sources or damage. In recent years, new SHM methods using 
acoustic waves have been developed. They may be based on thermosonics (Barden, 
et al., 2007) or on a low power guided wave system (Kim, et al., 2009). An interesting 
research presents the use of a probability-based imaging algorithm for damage 
detection with Lamb wave signals (Lu, et al., 2009). 
 
An approach through correlation technique has been presented recently (Leblanc, et 
al., 2007). This technique is applied to localize the formation of cracks or AE (acoustic 
emission) source. The impulse responses are acquired along a contour line that runs 
along the area of inspection. Internal impulse responses to the area are calculated 
using a wave superposition method. The detected acoustic waves mainly correspond to 
bending waves (A0 mode) through the assembly of non-symmetric piezoelectric plates. 
However, this process based on an absorption technique cannot address some 
particular damages such as static or quasi-static impacts that create more diffraction 
effect of the propagating acoustic waves than absorption.  
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In this work, we propose a correlation technique that relay on wave diffraction patterns 
recognition. It is an active damage monitoring process based on the amplitude 
disturbed diffraction pattern (ADDP) phenomenon of permanently emission of selected 
non-resonant Lamb waves. It assesses the disturbances that damage brings to the 
acoustic wave propagation in a solid. These disturbances depend on the damage 
position and the frequency of excited signal. With analysis and a calibration procedure 
of this variation, we can locate precisely the damage position. This process has been 
successfully used as a multi-touch sensing approach to tactile sensing (Liu, et al., 
2009; Liu, et al., 2010). It has been diverted from their initial use to be applied to 
damage monitoring (Liu, et al., 2011).  
 
The output of an SHM process should give information on the type, localization and the 
severity of damage. Moreover, it should give a fixed number of the more relevant 
damage features classified in a likelihood sense. In a pattern recognition approach, it 
has to be seen as probabilistic multi-class classification problem where each class 
represents a damage feature's (localization, type, ...). We propose here to describe an 
original classification technique, the Probabilistic Decision Tree (PDT) producing a 
posteriori probabilities in a multi-class context. It is based on a Binary Decision Tree 
(BDT) with Probabilistic Support Vector Machine classifier (PSVM). At each node of the 
tree, a bi-class SVM along with a sigmoid function are trained to give a probabilistic 
classification output. For each branch, the outputs of all the nodes composing the 
branch are combined to lead to a complete evaluation of the probability when reaching 
the final leaf (representing the class associated with the branch). Formally, we are 
interested in solving a multi-class data classification problem in a manner that produces 
confidence probabilities associated with each damage feature. 
 
Actually, there exist two main types of classifiers: hard and soft (Liu, et al., 2011; 
Wahba, 2002). Hard classifiers, such as support vector machine (SVM) and all the 
associated multi-class techniques, build a frontier between classes. They only label 
new unknown points with the class associated to the side of the frontier in which they 
fall, without giving any idea of the certitude of the decision or the degree of membership 
to that class. These classifiers are very appealing, because in general they tend to give 
very accurate predictions. On the opposite, soft classifiers like Logistic Regression (LR) 
(David W. Hosmer & Lemeshow, 2004) are able to build probability estimations for the 
belonging to all the classes, and then with this information they choose the most likely 
class. We are thus interested, in a multi-class context, by the probabilities estimation 
offered by soft classifiers while keeping the hard classifiers proved performances (Platt, 
2000). To reach this objective, hard classifiers need to be first adapted to a multi-class 
context. Support Vector Machines (SVM) are a powerful tool for data classification 
(Weston & Watkins, 1998). Unfortunately, they were originally designed for bi-class 
decision problems and their extension to multi-class problems is not straightforward 
and is still an on-going research issue (Hsu & Lin, 2002). Classic SVM multi-class 
approaches such as "one-against-one" (OvO) (Friedman, 1996), "one-against-all" 
(OvA) (Vapnik, 1998) or Diagram Acyclic Graph (DAG) (Platt, et al., 2000) have shown 
adequate results but don’t take into account the structure and the distribution of the 
data when separating the classes. To overcome this drawback, Madzarov (Madzarov, 
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et al., 2009) came up with a simple and intuitive approach based on building a binary 
decision tree. By selecting specific features, such as the distance between gravity 
centers of the different classes, an automatic graph is generated where at each node a 
bi-class SVM is trained. However, such multi-class hard classifiers only provide one 
predicted class without any associated score indicating the confidence of the 
classification. In this bi-class context, Platt (Platt, 2000) proposed a method for 
extracting probabilities                from SVM outputs to be used for classification 
post-processing. The approach consists in training the parameters of a sigmoid function 
to map the SVM outputs into probabilities. The underlying idea of Probabilistic SVM 
classifier (PSVM) is that as the distance from an example to the frontier is larger, the 
example is closer to that class, which implies that the example will very likely belong to 
that class. Adapting Platt’s method to a multi-class context, it is thus, in principle, 
possible to build the confidence index that we need while keeping the demonstrated 
performances of hard classifiers.  

Based on Madzarov (Madzarov, et al., 2009) and Platt (Platt, 2000) algorithms, we 
present Probabilistic Decision Trees (PDT) as an original approach to the multi-class 
probabilistic classification problem. The proposed PDT algorithm takes advantage of 
the decision tree architecture and of the classification posterior probability provided by 
PSVM. The PDT will provide fast classification (logarithmic complexity) along with 
associated posterior probabilities                . At each node of the PDT, SVM 
classification associated with a sigmoid function is performed to estimate the probability 
of membership to each sub-group. A probability function is then built for each leaf, by 
following the path that the PDT has generated for it. 

The remit of this paper is to present an original active data-driven SHM approach. It is 
based on acoustical wave diffraction patterns as damage-sensitive features and a 
Probabilistic Decision Tree (PDT) tree Support Vector Machine (SVM) architecture for 
damage indicator. The approach will follow sequential process depicted in Fig. 1. 

Fig. 1: ADDP–SVM-PDT probabilistic damage localization process 

2. LAMB WAVES ILLUMINATION

 Consider a structure like plate with Lamb wave transmitters and receivers on its 
edges, as the most energy carried out by a Lamb wave is the shear wave energy, it 
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follows, that in case of static damage this energy will be attenuated which will provide 
position associated information for localization. Indeed, once stable wave interference 
is established on the structure, it will be monitored by wave receivers (Fig. 2). In the 
case of damage, diffraction signals will be observed in real time by the receivers. If the 
diffraction signal has a bijective relation with the damage’s property, e.g. position, we 
can then use a pattern recognition process to identify the damage.  

This observation supposes that the plate is permanently excited with acoustic waves. 
We have proposed a nondestructive active flaw monitoring method using non-
resonance acoustic waves composed of several     ) frequency components. The 
monitoring process relays on the identification of waves diffraction patterns. This 
process is also called an Amplitude Disturbed Diffraction Pattern (ADDP) process.
Exciting the structure with non-resonance frequencies permit also to overcome the 
problems associated with the instability of resonance patterns. In addition, since there 
is no more resonance materialized on the surface of the object, to help the localization 
of flaw or a touch on the plate, this process suggests to replace resonance patterns 
with figures of illumination. In fact, the method presented in this study proposes to 
create pattern which is not dependent on the resonance modes with high selectivity, but 
on the way how waves propagate through the plate. For more details and analytical 
consideration on this approach please refer to Liu (2010). 

As suited previously, the Lamb wave pattern method requires first a calibration process. 
This process is described in Fig. 2. Consider a rectangular structure with wave 
transmitters and receivers, as shown in Fig. 3. For each possible damage position, 
discrete points       are defined a priori on the surface. An acoustic signal measured in 
the calibration step associated with one discrete point, is considered as one pattern. A 
calibrated impact on the object in the localization step will give a diffracted signal of the 
propagating Lamb waves. The localization involves a classification process. 

Fig. 2: (a) Calibration steps. (b) Signal flux 
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If the emitted signal is given as     , the received acoustic signal      can be 
expressed as a function of emitted signal, the object geometry  , the flaw position  
and flaw surface  :

),,),(()( SPGteFtr  (1)
 In a training step, the sensible surface of the object is divided into an array of 
predefined "flaw points". Predefined flaw points are sequentially realized to stock a 
reference matrix. The area and nature of flaw is identical as a first approximation. The
Fourier transform,       of received signal at each position     can be expressed by:  

),,),(()( ,, SPGfEFfR jiji  (2)
 If the flaw effect is minor comparing with the whole object, the     and   can 
be considered as constants. As we maintain the flaw surface, the variation of S is 
negligible, so we consider that the received signal      is only function of contact 
position  .

),()( ,, fPFfR jiji  (3)
 Once we have an array of reference received signals, we can use it for 
monitoring the damage by generating damage index and feeding the SVM-PDT 
classifier.

In the case of impact detection, a test bench has been designed (Fig. 7). It is a copper 
plate with dimension 75 mm × 100 mm and active elements (PZT,type Pz27) bonded to 
the edges. 

Fig. 3: (a) Active plate. (b) Wave Illumination. (c) FFT figure of acquired signals. Quasi-
static impact at the position (x1, y1), by PZT Receiver 1 

This method enhances the active acoustic plate featuring a process that continuously 
generates Lamb wave packets,       per second. This monitoring technology is said 
"active" as regards Lamb wave generation, meaning excitation signals are fundamental 
to its reliability. 
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4. PROBABILISTIC CLASSIFICATION 
 
4.1 Probabilistic Support Vector Machines 

Classic support vector machines (SVM) have proved to be a very effective 
classification method (Lee, et al., 2001). They are binary linear classification techniques 
which search for the hyper plane (in the hyperspace of attributes) that separates two 
classes in a training set. This hyper plane is found by maximizing the so-called margin, 
which is the distance from the hyper plane to the closest points, denoted support 
vectors. A common variant of classic SVM, is called soft margin and it consists of 
admitting some misclassified points in the training set for preventing the over fitting 
problem. Although, we want to avoid too many points being misclassified, thus we 
impose a penalty   that will penalize every misclassified example.   can take values in 
the range      . A high value of   means a strict classifier that doesn’t admit 
many misclassified points. On the opposite, a small   means a very flexible classifier. 
Formally, we have a training set {                   , where every point    
            has m attributes and one of the two possible labels           . A soft 
margin SVM classifier will label a new unknown point    according to the decision 
function:  
                          (5) 

where   and   are the hyper plane parameters obtained from the minimization of the 
cost function in Equation 7 on the training set. 

In SVM, kernels are used to project the data into a virtual space where it might be 
easier to separate them (Vapnik, 1998). The main advantage of kernel functions is that 
the only operation needed to be defined in the new virtual space is the inner 
product  (     )  ⟨     ⟩

 . Several kernel functions are used in this work we manly use 
the Gaussian kernel (Chang & Lin, 2011). 

Applying a kernel function, the soft margin and the Wolfe dual formulation the SVM 
problem is presented as:  

                   (6) 

where      is defined as: 

      ∑               

 

   

 (7) 

the values of    and     are found solving the following constrained optimization 
problem: 
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In the PDT approach, and for its use in the car diagnostic classification, we choose to 
use the Gaussian kernel. It only has     as parameter. A small value of     will lead to 
curved hyper plans and a high value will force the hyper plans to be straighter. In 
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(Keerthi & Lin, 2003) it is showed that from some combinations of the 
hyperparameters      ), the Gaussian kernel tends towards the linear kernel, which 
makes the Gaussian kernel the most general method and one that will work for a large 
range of datasets. The hyper parameters        have to be optimized for every 
classification problem. In (Keerthi & Lin, 2003) an effective technique that we 
implemented is proposed. 
As stated before, SVM produce a value that is not a probability. Indeed, SVM only give 
a class prediction output that will be either +1 or -1. In order to extract associated 
probabilities from SVM outputs several approaches have been proposed (Platt, 2000; 
Vapnik, 1998; Hastie & Tibshirani, 1998). We will focus on Platt’s approach (Platt, 
2000). Platt (Platt, 2000) proposed a technique that has been largely used in the 
literature. He builds a sigmoid function between the outputs      of the SVM and the 
probability of membership          to a class  , given the attributes of  . A simple bi-
class example is shown in Fig. 4 
The sigmoid will have the following parametric expression: 

                
 

          
 (5) 

 
Fig. 4: SVM and probability estimation for a 2D binary problem 

where   and   are parameters computed from the minimization of the negative log-
likelihood function (Platt, 2000) 

  ∑                                      

 

 (6) 

and    is the new label of the classes. 1 becomes    and -1 becomes   . This relabeling 
procedure is conducted so that the sigmoid fit will be softer. These new labels are 
computed using the expressions: 

    
    

    
               

 

    
 (7) 

where    and    are the number of points that belong to class 1 and class 2 
respectively. 
The PSVM as proposed by Platt (Platt, 2000) uses first a SVM classifier that has to be 
trained with a training set   . Then the sigmoid parameters       have to be found. To 
do so, it is recommended (Platt, 2000) to use a second training set   . The sigmoid fit 
requires the inputs      and the labels   . We use    as a test set for the classifier. 
Thus we obtain the output values      . Knowing the labels of    (how many positives 
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ones and how many negatives ones) we can calculate    and    for this sub-training 
set. With values                we then find       by optimizing Eq. (9) using a 
Newton’s method with backtracking, as proposed by (Lin, et al., 2007). After these two 
steps, we have an a posteriori probability estimator to the bi-class problem. We can 
then classify new points and give them an associated probability of belonging to class 1 
or 2. 
 
4.2 From bi-class to multi-class problems 
SVM were originally designed for bi-class classification problems, the passage to multi-
class problems is still an on-going research area (Hsu & Lin, 2002). There are two 
major approaches to solve this type of problems. 
The first and the one that could be more intuitive consist in formulating a cost function 
with   (the number of classes in our problem) hyperplanes (Weston & Watkins, 1998).  
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 (8) 

For this formulation, the decision is given by 
         

 
                          (9) 

This method suffers from the problem that an optimization with so many variables is 
more difficult to solve for the algorithm, can give slower results and even in some 
occasions may not converge (Hsu & Lin, 2002). 
Another approach is to divide the multi-class problem in several binary sub-problems. 
There are numerous methods that do the division. The most popular are One against 
one (Friedman, 1996), One against all (Vapnik, 1998) , Diagram Acyclic Graph (DAG) 
(Platt, et al., 2000) and Binary decision Trees (BDT) (Madzarov, et al., 2009). For sake 
of shortness, we will only focus on the BDT method, because it is the one we will use. 

In (Madzarov, et al., 2009), they proposed to build a binary tree in which at every 
node the remaining classes separated in two subgroups    and   . A SVM classifier 
decides to which subgroup the new point belongs, so in which direction to move. In 
order to build the tree (the first step in the classification procedure) a clustering 
algorithm divides all the   classes into    and   . The algorithm calculates the gravity 
centers of all classes, the two classes with the biggest Euclidean distance from each 
other are assigned to each of the sub-groups. Then the algorithm checks the closest 
class to one of the sub-groups, this class is assigned to that sub-group, their gravity 
center is recalculated with the new points that have just been added. This is repeated 
until all classes have been assigned to one of the groups. An example is illustrated by 
of Fig. 5. For each sub-group the clustering algorithm is repeated until there is no more 
than one class per sub-group. Those sub-groups will be called the leaves of the tree 
and a point that falls there will be assigned with the class of the leaf. 
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Fig. 5: Illustration of SVM-BDT 

It is important to note that BDT testing time is smaller than other methods because the 
depth of the decision tree is of order       since at every level the tree eliminates 
approximately half of the remaining classes. The testing time is an important 
characteristic that must be taken into account when choosing a classifier. 

4.2 Probabilistic decision trees (PDT) 
In this paper, we propose to build a binary decision tree following the idea introduced 
by Madzarov (Madzarov, et al., 2009), but instead of using a simple SVM classifier in 
each node, we use a SVM classifier associated with a sigmoid function (PSVM) to 
estimate the probability of membership to each sub-group in the node, as shown in Fig. 
6. The tree may be built using different criteria, for example the Euclidian distance 
between the gravity centers, the margin obtained by pairwise SVM (Chalasani, et al., 
2007) or some physical or functionalities criteria (mechanical, electrical, etc.). This is 
very interesting because in this way we introduce previous knowledge from an expert 
that might help the classification task. We can then build a probability function for each 
leaf, knowing the path that a point has to follow to reach it.

Fig. 6: Example of a probability decision tree 

Note that there is only one way to get to a leaf, so the probability functions are unique 
for a trained tree. 

          ∏           

    

   

(9)

  is the level of the tree and     is the root node. The previous expression states that 
the probability of membership of an element to the class   is calculated as the product 
of the probabilities of the decisions taken in all the nodes visited until arriving to the 
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leaf. By           we mean the   node in the   level. Once the tree is built we will also 
have the   probability functions, one for each class. When classifying future unknowing 
cases we will just have to evaluate the   analytical functions and then chose the class 
with the highest score. However, we don’t have to settle with just one predicted class. 
One of the most interesting things of the PDT is that we can have more than one 
prediction for one subject. We can have a list of all the possible classes, ordered after 
their plausibility, which is measured with the probabilities estimation. So, instead of 
having one predicted class like classic SVM multi-class methods, we will have several 
options. 

5. DAMAGE LOCALIZATION ON AN ACTIVE COMPOSITE PLATE 

5.1 Experimental setup  
The proposed damage localization method is applied to a free-free composite plate 
              ) with 4 PZT transducers. The experimental setup is described in 
Fig. 7. 

Fig. 7: The smart structure and the test bench 

The plate is divided into 16 zones (Fig. 8). To simulate damage, a calibrated mass has 
been positioned on each zone. 

Fig. 8: Composite plate and damage zones 

Lamb waves at different frequencies have different propagating velocities and ratios 
between the normal and the shear components, so they have different diffraction 
behaviors when a finger touches the plate. A sinusoidal excitation signal could provide 
single amplitude change information produced by damage. Adequate number of 
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different excitation frequencies is required to distinguish the damages at numerous 
predefined positions, which would have same or similar modified amplitude at same 
frequency. In this paper, we propose an excitation signal composed of 31 frequency 
components distributed from 20 kHz to 100 kHz.   

Fig. 9: (a) Excitation signal. (b) Time response. (c) Frequency response.

5.2. Calibration and SVM-PDT classification 

A PSVM-PDT classifier has been trained using a dataset composed by the 96 
experiences made on the plate (6 repetitions for each position). As attributes we chose 
the FFT (Fast Fourier Transform) response of the signal received by each sensor R1 
and R2. In order to extract only the most significant information, we use only the first 
200 frequencies of the spectrum. 
Given that each sensor perceives different parts of the information, we have 
concatenated both signals, obtaining a vector containing 400 attributes. 

   [                                           ]           
The labels will be the 16 zones,         , in which the plate is divided, as shown in 
Fig. 8

Once trained, the PDT has   probability functions, being   the number of zones in 
which we have split our plate. The damage position can be visualized on a figure 
representing the normalized distances with a grey amplitude scale. In Fig. 10, the 
probability distribution over the plate is shown for a test that was made adding an 
artificial damage in zone 16. This example was used in the learning database. It’s very 
interesting to see how the zone is well isolated, the neighbors also have a probability of 
being the damaged zone, but a smaller one. 

Fig. 10: Probability distribution for a damage located in zone 16 
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To test the effectiveness of the method, we give to the classifier 8 “unknown” points to 
classify. These points are other experiences performed by introducing the damage 
anywhere on the plate (Fig. 11). For these points, the classifier will only have their FFT 
information, as above 

   
 [                                           ]          

Fig. 11: Test damage location 

The predicted damages localization (P6 and P3) and the their associated probability 
are given in Fig. 12 and Fig. 13. 
For test P3 the damage is located in the last row, between the third and fourth colon. 
The classifier has located the damage in the right position. We can see that it also 
gives a small probability to the zones around, since the damage was not positioned in 
the middle of the zone. 

Fig. 12: Probability distribution for the test P3 

For test P6 the damage is located in the third row, first colon. The classifier has located 
the damage in the right position. There are some zones, in particular on the last colon, 
that have small probabilities too. These results could be expected due to wave 
reflections. To ovoid these ambiguity, more frequencies should be used in the 
excitation signal.   

1033



Fig. 13: Probability distribution for the test P6 

3. CONCLUSIONS 

In this paper, we have proposed an original active data-driven SHM approach. It is 
based on acoustical wave diffraction patterns as damage-sensitive features and a 
Probabilistic Decision Tree (PDT) tree Support Vector Machine (SVM) architecture for 
damage indicator.  
This active SHM scheme uses permanently emission of selected non-resonant Lamb 
waves into the structures and monitors a damage index (DI) relying on the recognition 
of amplitude disturbed diffraction pattern (ADDP). Based on this ADDP, a detection and 
localization approach is proposed. It exploits the measurements to train an original 
SVM clustering algorithm utilizing a specialized binary decision tree (SVM-PDT) 
producing a posteriori probabilities of damage localization in a multi-class context. The 
approach has been test experimentally on a composite plate, and results are 
promoting. To enhance the classification some new algorithmic developments are in 
progress based on the introduction of structure geometry's information during the 
construction the binary tree. 
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