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ABSTRACT 

The structures of concern in this study are subject to two types of forces: dead loads 
from the acceleration imposed on the structures as well as the installed operation 
machines and the additional adjustable forces.  We wish to determine the critical values 
of the adjustable forces when buckling of the structures occurs.  The mathematical 
statement of such a problem gives rise to a constrained eigenvalue problem (CEVP) in 
which the dominant eigenvalue is subject to an equality constraint. A numerical algorithm 
for solving the CEVP is proposed in which a trial-and-error method is employed to identify 
an interval embracing the target eigenvalue.  The algorithm is applied to three 
engineering application examples including the critical load of a cantilever beam subject 
to its own body force, and buckling loads of two plane structures when body force is 
present.  The accuracy is demonstrated using the first example whose classical solution 
exists.  The significance of the equality constraint in the CEVP is shown by comparing the 
solutions without the constraint on the eigenvalue.  Effectiveness and accuracy of the 
numerical algorithm are presented. 

1. INTRODUCTION 

Buckling has been one of the main concerns in structure design against catastrophic 
failure for a long time.  Naturally the topic has attracted a large group of researchers and 
engineers in the past rendering a rich source of articles in the area.  A few textbooks in 
theoretical settings as well as numerical practices have been published and used in 
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academia, such as Timoshenko and Gere (2009), Bathe (1996) and Cook et al. (2007), 
which provide a good source of references in the related fields.  Further, the numerical 
procedures of finding the buckling loads have been implemented in a few commercial 
codes for engineering practices, for example, ANSYS (ANSYS Inc., 2012), ADINA 
(ADINA R & D Inc., 2012), MARC (MSC Software 2013), and ABAQUS (Simulia 2011).  
The study regarding the buckling of the elastic object subject to gravity as well as other 
applied loads has received much less attention.  Roberts and Azizian (1984) and Roberts 
and Burt (1985) investigate the lateral buckling of an elastic I-beam subject to uniformly 
distributed load using energy method.  Influence of such parameters as sectional 
warping rigidity, location of applied load with respect to the shear center is thoroughly 
studied.  Dougherty (1990, 1991) considers the lateral buckling of an elastic beam 
subject to uniformly distributed load as well as a central point load and end moments.  In 
the studies, gravity load of the beam is modeled as a uniformly distributed load applied 
on the top surface of the beam.   A numerical approach is employed to solve for the 
critical load for the beam. 

The loads applied on the beam in the studies by Kerstens (2005) and Cheng et al. 
(2005) appear to be proportional in that the point force and the uniformly distributed load, 
for example, vary at the same rate, if necessary.   In this currently study, gravitational 
load and other applied forces are non-proportional.  Thus the buckling problem under the 
influence of gravity is formulated as a constrained eigenvalue problem.  Kerstens (2005) 
provides a review of methods employed in solving constrained eigenvalue problems.  
Cheng et al. (2005) present a classic study of the buckling of a thin circular plate.  In the 
study, Ritz method is employed to solve the first buckling load of the circular plate with 
boundary fixed.  The only load is the in-plane gravity.  Kumar and Healey (2010) present 
a study of stability of elastic rods.  The generalized eigenvalue problem consists of a set 
of constraint equations imposed on the nodal displacements of the model.  There is no 
constraint on the eigenvalue itself.  Efficient numerical methods are presented to solve 
the first few lowest natural eigenvalues.  Zhou (1995) examines an algorithm for the 
design optimization of structure systems subject to both displacement as well as 
eigenvalue (natural frequency) constraints.  An iterative algorithm based on Rayleigh 
Quotient approximation is shown to be efficient in solving the dual constraint eigenvalue 
problems. 

In this paper, the problem to be tackled is given and formulated in mathematical form 
in Section 2.  The deviation of the current problem from the others is disclosed.  It is 
shown that addressing the current problem using the usual treatment would lead 
significant errors.  Section 3 presents a simple algorithm for solving the problem 
efficiently.  The proposed algorithm is tested using three numerical examples in Section 
4.  It is seen from the examples that the proposed algorithm has achieved excellent 
accuracy. 

2. MATHEMATICAL STATEMENT OF THE CURRENT PROBLEM 

Conventionally the buckling load of a structure can be determined by solving the 
following eigenvalue problem. 
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 [     ]   . ( 1) 

where K is the usual stiffness matrix of the structure, λ the eigenvalue or load factor (LF), 
U the nodal displacement vector, and Kf the stiffness matrix of the same structure due to 
stress stiffening from an externally applied force f set at an arbitrary reference magnitude 
given as follows. 

    ∫       ( 2) 

where G and S are, respectively, modified strain-displacement and stress matrices 
(Bathe 1996, Cook et al. 2007).  Note that in case of line elements, the stress matrix 
contains only a component S = [x] where x is the axial stress in the elements.  Thus, 
Eq. ( 2) becomes 

    ∫        ( 3) 

Likewise, the higher-order Green-strain-displacement matrix for line elements is given as 
below. 

   
 

  
  ( 4) 

where the shape function matrix N contains the usual linear and cubic Hermitian 
interpolation functions for bar and beam elements, respectively (Cook et al. 2007).  It is 
understood that for a non-trivial solution to exist, the determinant of the multiplier matrix 
in Eq. ( 1) must be zero. 

 ‖     ‖   . ( 5) 

Once the eigenvalues are found, the critical buckling load fc of the structure is given as 
follows. 

       , ( 6) 

where λ1 is the lowest eigenvalue known as critical load factor. 

As depicted in Figure 1, a deformable object is loaded with a reference force f while 
being subject to a given acceleration motion a0.  As a result, there are two stress 
stiffening matrices due to the applied load and the acceleration force, Kf and    , 
respectively.  It is our goal to determine the buckling load of the structure while it is under 
the given acceleration.  Thus for the current problem an eigenvalue system to be solved 
may be given below. 
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 [   (      )]   , ( 7) 

 

Figure 1 Schematic of the present problem – an object attached to a rigid support and 
subject to both external force and acceleration a0. 

After the eigenvalue problem is solved, the critical buckling load of the structure can 
be determined using Eq. ( 6).  Meanwhile, there would be a “critical acceleration” which in 
combination with the critical load would put the structure in an unstable state.  The 
acceleration under the critical condition ac is determined as follows. 

        . ( 8) 

Unless λ1 = 1, we have      .  Clearly, the above methodology does not provide the 
correct solution to the problem.  

Consequently a proper method is required to solve the eigenvalue problem so that 
the acceleration remains at the fixed value a0 when buckling occurs.  Consider the 
following constrained eigenvalue problem (CEVP). 

 [   (      )]   , ( 9) 

subject to 

        , ( 10) 

where K, Kf are the same matrices as before,    the stress stiffening matrix using a 
reference acceleration a, and α an unknown participation factor.  Of concern is the 
buckling load fc of the structure while the acceleration remains at a0.  Since a is a 
reference number, we may choose a = 1 for convenience. 

Note that other constrained eigenvalue problem exists (Kerstens 2005, Kumar and 
Healey 2010) in which equality constraints are imposed on the eigenvectors so some 
nodal displacements in the model are deformed in a specific way. 
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3. NUMERICAL ALGORITHM 

For a given structure, the total stiffness matrix K can be readily formed first.  The
stress stiffening matrix Kf can be obtained by using the stress stemming from an 
arbitrarily chosen reference force f corresponding to the applied load which remains the 
same throughout the following numerical scheme. To obtain the stress stiffening matrix 
  due to acceleration, we may choose a = 1 for convenience. In the following numerical 
scheme, a series of values for the participation factor αi is used in solving the following 
eigenvalue problem. 

[   (       )]   , ( 11)

Therefore, a series of acceleration ai is obtained via the following relation. 

       , ( 12)

In the scheme seen in Figure 2, the eigenproblem is solved until the target value a0 falls 
within the interval:           . 

Figure 2 The trapping scheme for finding unknown α.

Let us introduce a natural coordinate , 1 ≤ ≤ +1.  From the following linear 
interpolation, we can determine the natural coordinate  corresponding to the target 
value a0. 

   
 

 
(   )   

 

 
(   )    . ( 13)

Or,

  (           ) (        )⁄ . ( 14)
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Upon substituting this natural coordinate into the following interpolation equation, the 
unknown participation factor can be determined. 

   
 

 
(   )   

 

 
(   )    . ( 15) 

It is worth mentioning that linear interpolation is used in the above calculation with a 
proper selection of the increment used in αi.  The result obtained certainly can be 
improved if quadratic interpolation is used. 

The eigenproblem Eq. ( 9) is solved one more time using the participation factor found 
from Eq. ( 15).  The eigenvalue found together with the participation factor in Eq. ( 15) 
constitute the solution to the constrained eigenvalue problem.  The proposed algorithm 
can be easily implemented in ANSYS APDL (ANSYS Inc., 2012).  In the following 
section, we use three examples to demonstrate the accuracy and efficiency of the 
algorithm presented here. 

4. APPLICATION EXAMPLES 

All the examples presented in this section are two-dimensional; the algorithm can be 
extended to three-dimensional cases easily.  A theoretical solution in approximate form 
exists for the first example, which serves as the guide for validating the accuracy of the 
proposed algorithm.  In the other two examples, the purpose is to demonstrate the 
efficiency of the numerical algorithm.  It is not intended to identify the worst case 
scenario. 

4.1 Buckling of a Beam Subject to Constant Acceleration 

 

Figure 3 An elastic beam subject to a constant acceleration and an axial force P. 

As depicted in Figure 3, an elastic beam is subjected to a point force P at the free end 
as well as constant acceleration a.  The theoretical solution of the buckling load when the 
acceleration is the gravity g is given approximately as follows (Timoshenko and Gere 
2009). 

 
    

    

   
         ( 16) 

where EI is the beam’s flexural rigidity and L the length of the elastic beam.  Note also 
that the beam would buckle due to its own weight if the following equation holds 

L

a

.
A P

x
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(Timoshenko and Gere 2009). 

 (    )   
       

  
 ( 17) 

Assuming steel is used (E = 200 GPa,  = 7,890 kg/m3), acceleration is a = g = 9.81 m/s2 
and the geometric properties of the beam are: L = 5 m, A = 1.58×10-4 m2 and Izz = 
2.725×10-9 m4, Eq. ( 16) yields the following exact solution. 

             ( 18) 

To use the proposed numerical scheme for a twenty-five two-dimensional beam 
elements for the beam in Figure 3, a MATLAB code is developed.  Note that some of 
codes in the text by (Kwon and Bang, 2000) come handy for this endeavor.  In the 
calculation, the reference force and acceleration chosen are: P = 10 N and a = 1 m/s2. 

Table 1 reveals a few calculation steps used to contain the target acceleration g = 
9.81 m/s2 between the 4th and the 5th steps.  Therefore, upon using               
        in Eq. ( 14) the natural coordinate corresponding to the target acceleration g is 
         .  The participation factor determined through Eq. ( 15) is         . 

Table 1 Numerical calculation for finding the participation factor for the elastic beam in 
Figure 3. 

No. P, N   a, m/s2 

1 10 2 3.9121 7.8242 

2  2.25 3.7813 8.5079 

3  2.5 3.6588 9.1470 

4  2.75 3.5438 9.7455 

5  3 3.4357 10.3071 
 

With the combination of P = 10 N and α = 2.7787, the eigenvalue problem Eq. ( 9) is 
solved once more which gives λ1 = 3.5311.  Consequently, the beam is subject to the 
acceleration a = αλ1 = 9.812 m/s2, which is the gravity.  And, the buckling load for the 
beam is:                 which is within 0.2% of the exact solution. 

If we used Eq. ( 7) with the reference force and acceleration, P = 10 N and a = 1 m/s2, 
to determine the buckling load of the beam, we would have obtained λ1 = 4.5338.  Thus, 
the critical force at buckling would have been                     while the beam 
is subject to an acceleration a = λ1 × 1 m/s2 = 4.5338 m/s2. 

4.2 Buckling of a Truss Structure 

Figure 4 shows a plane truss of a simplified crane.  It has three point masses at three 
different locations.  The mass m1 = 4,000 kg at point F represents the mass of a 
counterweight, while m2 = m3 = 2,000 kg are the masses of a control unit of the crane at 
points D and E.  The truss is constrained so no translational movement at points A and B.  
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Note that all members of the truss and the two cables are made of steel (E = 200 GPa,  
= 7,890 kg/m3) with circular cross-section r1 = 12.5 mm.  It is our intent to determine the 
maximum load Wc that the truss can carry at point F prior to buckling. 

 

Figure 4 A plane truss with three concentrated masses at points D, E and F carries a 
payload W at  C. 

In this example, 74 link elements are used for the bars and cables.  Each node has 
two translational degrees of freedom.  Three point elements are used to model the 
masses at points D, E and F.  Table 2 shows the numerical calculation using a code 
written in MATLAB.  Therefore, the target acceleration is enclosed in the interval between 
a4 = 9.3918 and a5 = 10.6022. 

Table 2 Numerical calculation of finding the buckling load for the plane truss in Figure 4. 

No. W, KN   a, m/s2 

1 10.0 0.03 173.91 5.2173 

2 
 

0.04 167.72 6.7088 

3 
 

0.05 161.93 8.0965 

4 
 

0.06 156.53 9.3918 

5 
 

0.07 151.46 10.6022 
 

From Eqs. ( 14) and ( 15) the natural coordinate corresponding to the gravitational 
acceleration g and the participation factor are, respectively: 

                      . 

The eigenvalue problem Eq. ( 9) is solved one final time using W = 10.0 KN and α = 
0.06338 which results in λ1 = 154.78.  The downward acceleration the plane truss subject 
to is a = αλ1 = 9.810 m/s2.  And, the buckling load for the beam is:        
         .  Note that upon solving the eigenvalue problem from Eq. ( 1) using the stress 
stiffening matrix Kf of the truss structure stemming from the reference force W = 10.0 KN 
and the gravitational acceleration g = 9.81 m/s2, the eigenvalue is λ1 = 4.553.  This 
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indicates that the buckling load would have to be                , which is only 3% 
of the buckling load using the current algorithm.  To cause the truss structure to buckle at 
this load the gravitational acceleration would have to be a = gλ1 = 44.66 m/s2. 

4.3 Buckling of a Plane Frame on an Accelerating Vehicle 

In the third example, a plane steel (E = 200 GPa,  = 7,870 kg/m3) frame installed on 
a vehicle is subject to a known point force FD = 1,500 N at point D.  In addition there are 
two known masses m1 = 200 kg, m2 = 300 kg at points C and E.  The horizontal beams of 
the frame are of a wide-flange cross-section, while the vertical beam is of C-channel.  
The cross-sections of beams are: A-A: A1 = 484×10-6 m2 and I1= 4.205×10-8 m4, and B-B: 
A2 = 384×10-6 m2, and I2 = 9.260×10-8 m4.  It is of interest to know the critical horizontal 
acceleration ac of the vehicle when the 2D frame buckles.  Note the gravity is g = 9.81 
m/s2 and the frame is hinge-supported at points A and G as shown in Figure 5. 

 

Figure 5 A traveling vehicle with a plane frame carrying two masses m1 and mass m2 
and subject to a force FD. 

Let us introduce a scaling factor  so that 

   
  

 
 ( 19) 

which simply correlates the magnitudes of the two given quantities.  Thus,  = 152.91 for 
the present case.  To tackle this example, Eqn. ( 9) is modified to account for the various 
loads as follows. 

 [       (        )      ]     ( 20) 

where both g1 and a are arbitrarily chosen magnitudes corresponding to gravity g and the 
horizontal acceleration and F1 = g1.  Furthermore, Kg1, KF1 and Ka are, respectively, the 
individual stress stiffening matrices due to g1, F1 and a alone.  The constraint equation ( 
10) becomes 
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        . ( 21) 

Table 3 Numerical calculation for finding the participation factor for the plane frame in 
Figure 5. 

No. g, m/s2   a, m/s2 

1 1.0 1.5 6.4605 9.69075 

2 
 

1.6 6.094 9.7504 

3 
 

1.7 5.7667 9.80339 

4 
 

1.8 5.4727 9.85086 

5 
 

1.9 5.2072 9.89368 
 

For the numerical study, the dimensions used for the frame are h = 6 m, w = 4 m, b1 = 
1.5 m, b2 = 2 m and b3 = 4.5 m.  Using g1 = 1 m/s2 and a = 1 m/s2 in the proposed 
algorithm, the critical participation factor found from Eqs. ( 14) and ( 15) is cr = 1.713 
which is between steps 3 and 4 in Table 3. 

With this cr the eigenvalue problem Eq. ( 20) gives λ1 = 5.726.  Therefore, 

                                                              . ( 22) 

It is seen that constraint Eq. ( 21) is satisfied.  Buckling of the plane frame occurs when 
the horizontal acceleration is               at which the applied force is exactly as 
specified, FD = 1,500 N.  The deformed shape of the frame in the first buckling mode is 
shown in Figure 6.  Note that the setting for this model is not symmetric. 

 

Figure 6 The first buckle mode of the plane frame in Figure 5. 

5. CONCLUSION 

The determination of the buckling load of an elastic structure in the presence of 
gravitational force is formulated as an eigenvalue problem subject to an equality 
constraint correlating an unknown participation factor and the given acceleration.  A 
methodology of solving the constrained eigenvalue problem is presented.  In the 
numerical algorithm, the eigenvalue problem is solved incrementally until the desired 
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participation factor falls within an interval.  Interpolation is employed to extract the 
accurate solution for the unknown.  Three examples are used to demonstrate the 
accuracy of the numerical algorithm.  Among them, one has an approximate theoretical 
solution.  The solution predicted by the proposed algorithm is in excellent agreement with 
the theoretical solution.  From the other two examples involving two-dimensional truss 
and frame, it is shown that the critical buckling loads predicted from the proposed 
algorithm are lower than those from the usual procedure by a relatively significant 
amount.  The procedure involves some manual intervention and is laborious.  It is 
necessary to develop an automatic numerical scheme for the problem in the future. 
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