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ABSTRACT 
 

This paper presents a convolution quadrature time-domain boundary element 
method (CQ-BEM) in fluid-saturated porous mediagoverned by Biot’s theory.The 
classical time-domain BEM (TD-BEM) has been applied to various wave 
analyses.However, it cannot be used for wave propagation in fluid-saturated porous 
media, because of the following reasons: 1) no time-domain fundamental solutions are 
known for the problem, 2) the method sometimes suffers from numerical instability. To 
overcome these difficulties, a convolution quadrature method (CQM) developed by 
Lubich is applied to the TD-BEM. The scattering problems of an incident plane wave by 
a cavity in poroelastic media are solved to validate proposed method. 

 
1. INTRODUCTION 

 
The dynamic analysis for the porous solid has been studied in soil mechanics and 

rock engineering fields. In particular, the dynamic analysis of ground liquefaction arose 
from earthquakes requires the consideration of the fluid-solid interaction. 

Biot(1956) proposed a dynamic poroelasticity formulation for the fluid saturated 
porous media with the fluid-solid interaction.The formulation is based onTerzaghi's 
consolidation theory, the total and effective stress principles, and effective porosity. 
According to Biot’s theory, two differentlongitudinal waves and one transvers wave exist 
in poroelastic solids, and all the waves have the dispersion property. 

Wave propagation in fluid-saturated porous media has been analyzed by the finite 
element method (FEM).However,the conventional time-domain boundary element 
method (TD-BEM), which is suitable for wave analysis, cannot be applied because no 
time-domain fundamental solutions are known for the problem. In addition,the method 
sometimes suffers from numerical instability when small time increments are used. 

Recently, a convolution quadrature boundary element method (CQ-BEM) has been 
proposedby several researchers(Schanzet al.1997 and Saitohet al. 2009). In the 
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formulation of the CQ-BEM, the convolution integrals of the time-domain boundary 
integral equations are numerically approximated using a convolution quadrature 
method (CQM). The CQ-BEM requires Laplace-domain fundamental solutions. 
Therefore, the use of the CQ-BEM is particularly helpful for poroelastic wave scattering 
problems where no time-domain fundamental solutions exist. 

In this paper, a CQ-BEM formulation for 3-D wave propagation in fluid-saturated 
porous media is presented. Numerical examplesare shown to validate the proposed 
method. 

 
2. BIOT’S THEORY 

 
The small and large indices used throughout this paper, such as ሺ ሻ, andሺ ሻ,ூ , 

range from 1 to 3 and from 1 to 4, respectively, unless otherwise stated.Additionally, 
summation over repeated subscripts is implied throughout thispaper. 

 
 

 
 

Fig. 1 A schematic of the model of poroelastic solid. 

 
 

2.1 Compatibility and constitutive equations 
Let us consider 3-D fluid-saturated porous media. The formulation ofporoelasticity is 

based on Biot’s theory. (Biot 1956) In this study, we assume thatporoelastic media 
consist of solid skeletons, solid particles, and pore fluids, asshown inFig. 1. Assuming 
that the displacements for a solid skeleton and forpore fluid can be represented as 
࢛ ൌ ሼݑଵ, ,ଶݑ ଷሽ்ݑ and ࢁ ൌ ሼ ଵܷ, ܷଶ, ܷଷሽ் , respectively.The compatibilityand constitutive 
equations are defined as follows: 

 

 ݁ ൌ
1
2

൫ݑ,  ,,൯ݑ ݁ ൌ ݁ ൌ , (1)ݑ

ߪ  ൌ ߳ߤ2  ሺ݁ߣ െ ,ߜሻߙ  ൌ െ݁ܯߙ  ߞܯ  (2)
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2.3 Wave propagation in poroelastic media 
According to Biot’s theory, two longitudinalwaves ( ଵܮ  and ܮଶ  waves) and one 

transvers wave (ܶ wave) exist in 3-D poroelastic solids. Thisdiscrepancy is the most 
significant feature of wave propagation in 3-D fluid-saturatedporous media, and these 
characteristics can be easily confirmed analytically in the frequency domain.  

Considering a planewave with wave number ݇క that is propagating to the ݔ direction 
as follows: 

 

 ൌ ሼ்࢛, ሽ் ൌ ൛்݁୧௫భ, ୧௫భൟ݁ܤ
்
 (5)

 
where ൌ ሼܣଵ, ,ଶܣ ଷሽ்ܣ  and ܤ  are the amplitudes of the solid displacementand fluid 
pressure, respectively. The vector  appearing in Eq. (5) is definedas a generalized 
displacement consisting of a solid displacement ݑ and fluidpressure . Eqs.(3)and(4) 
with no body force ሺi. e. , ܾ ൌ ܿ ൌ 0 ሻ  yields the following governing equations for 
generalized displacements, 

 

ூܮ ൌ 0 (6)

 
whereܮூare the differential operators given by 
 

ூܮ ൌ ቈ
ሾܮሿ ሼܮସሽ

൛ܮସൟ
்

ସସܮ
 ൌ

ۏ
ێ
ێ
ێ
ۍ

߲
ݔ߲

ܥ
߲

ݔ߲
 ߱ଶߩߜ൨ ൜െߙ

߲
ݔ߲

ൠ

ቊߙ
߲

ݔ߲
ቋ

் 1
߱ଶ ݉

Δ 
1
ےܯ

ۑ
ۑ
ۑ
ې

 (7)

 
whereܥ  is the elastic constant defined by ܥ ൌ ߜߜߣ  ߜߜሺߤ  ሻߜߜ . The 
variables Δand ωdenote the Laplacian and angular frequency,respectively. In addition, 
the parameters ݉ ,   are given byߩ , andߙ

 

݉ ൌ ݉  i
ܾ
߱

ߙ   , ൌ ߙ െ
ߩ

݉
, ߩ ൌ ߩ െ

ߩ
ଶ

݉
, ݉ ൌ

ߩ

ߚ
. (8)

 
Eqs.(5) and (6) yields different three wave numbers்݇, ݇భ

,and ݇మ
. The transverse 

wave number்݇is 
 

்݇
ଶ ൌ

ߩ
ߤ

߱ଶ (9)

 
andtwo longitudinal waves݇భ

 and ݇మ
 are obtained as follows: 
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ቊ
݇భ

ଶ

݇మ
ଶ ቋ ൌ

1
2

ቈ൫݇భబ
ଶ  ݇మబ

ଶ  ݇ொ
ଶ ൯ ט ቄ൫݇భబ

ଶ  ݇మబ
ଶ  ݇ொ

ଶ ൯
ଶ

െ 4݇భబ
ଶ ݇మబ

ଶ ቅ
భ
మ (10)

 
where݇భబ

, ݇మబ
 and ݇ொ are given by Fukui et al. (1996) and Yamamoto et al.(2002) as  

 

݇భబ
ଶ ൌ

ߩ
ߣ   ߤ2

߱ଶ,  ݇మబ
ଶ ൌ

݉
ܯ

߱ଶ݉, ݇ொ
ଶ ൌ

݉ߙଶ

ߣ  ߤ2
߱ଶ. (11)

 
Eqs. (9)and(10)imply that three varieties of waves exist inporoelastic solids, and ݇భ

 
and ݇మ

correspond to the fast longitudinal wave, and the latter one.Here, we define 
wave velocitiesfor these three kinds of wave numbers as ܿ ൌ ߱/݇ሺߢ ൌ ,ଵܮ
ଶ,orܶሻ.Therefore, in this paper, we referto the wave propagating with the velocity ܿభܮ

 
as the ”ܮଵ wave” ,ܿమ

 asthe ”ܮଶ wave”and ்ܿas ” ܶ wave”.In addition, in order to later use, 
the wave velocities corresponding to the wave number݇భబ

, ݇మబ
 and ݇ொ is also defined 

as ܿ ൌ ߱/݇ሺߢ ൌ ,ଵܮ  .ଶ,orܳሻܮ
 

3. CQ-BEM FOR 3-D POROELASTODYNAMICS 
 

3.1 Time-domain boundary integral equations 
Consideringan elastic wave scattering problem in an infinite poroelastic medium as 

shown in Fig. 2, the time-domain boundary integral equations are derived as follows: 
 

ሻ࢞ሺݍሻ࢞ூሺܥ ൌ ூݍ
୧୬ሺ࢞,  ሻݐ

                න ூܷሺ࢞, ,࢟ ሻݐ כ ,࢟ሺݒ ሻ݀ܵ௬ݐ
ௌ

െ න ூܹሺ࢞, ,࢟ ሻݐ כ ,࢟ሺݍ ሻ݀ܵ௬ݐ
ௌ

 (12)

 
whereݍூ

୧୬ሺ࢞, ,࢟ሺݒ ,ሻ shows incident waveݐ  ሻ is generalized traction, which isgiven byݐ
࢜ ൌ ሼ்࢚, ,ሽT ூܷሺ࢞, ,࢟ ,࢞ሻ and ூܹሺݐ ,࢟  ሻ are the time-domain fundamental solutionsandݐ
its double-layer kernels for 3-D poroelastodynamics, respectively. In addition,ܥூ is the 
free term (Brebbia 1984) which depends on the shape of boundary at observation 
point࢞. 

Normally, the time-domain boundary integral equations (12) are discretizedby using 
the appropriate interpolation functions for the unknown values andsolved by a time-
stepping algorithm. However, the boundary integral equationscannot be solved using 
such a scheme because there areno explicit time-domain fundamental solutions for 3-D 
poroelastic wave propagation. To overcome this difficulty, the CQM is applied to 
Eq.(12). 

 
3.2 Convolution quadrature method 
The convolution quadrature method (CQM), firstproposed by Lubich (1988), 

approximates the convolution ݂ כ ݃ሺݐሻ  by a discrete convolution using theLaplace 
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transform of the time-dependent function ݂ሺ߬ െ  ሻ. In general, the convolution integralisݐ
approximated by CQM as follows: 

 

݂ כ ݃ሺ݊Δݐሻ   ߱ିሺΔݐሻ݃ሺ݆Δݐሻ,



ୀ

݊ ൌ 0,1, … , ܰ (13)

 
whereݐ  is divided into ܰequal steps Δݐ  and ߱ሺݐ߂ሻare the quadrature weights. The 
quadrature weights are determined with the Laplace transform of the original time-
dependent function ݂and given as follows: 

 

߱ሺΔݐሻ 
࣬ି

ܮ
 መ݂ ቆ

ሻߞሺߛ

Δݐ
ቇ

ିଵ

ୀ

݁ିమഏ
ಽ  (14)

 
where መ݂ is the Laplace transform of ݂  and ߛሺߞሻ is the quotient of the generating 
polynomials of linear multistep method given by ߛሺߞሻ ൌ ∑ ሺ1 െ ሻ/݅ߞ

ୀଵ using backward 
differential formulas (BDF) and ߞ is given by ߞ ൌ  ଶగ୧/. Inaddition,  ࣬ is the radius of݁ߩ
a circle in the analyticity domain of መ݂ . ߳ is the error of the numerical calculation of 
Eq.(14),given by ࣬ ൌ √߳ and the parameter ܮ is set as ܮ ൌ ܰ  to accelerate the 
calculation of Eq.(14)by using FFT. 

 
3.3 Discretization of BIEs using the CQM 
If we discretize the boundary surface ܵ into ܯ boundary elements using apiecewise 

constant approximation of the unknown generalized displacementݍூ and traction ݒூ and 
using the CQM for the convolutions of Eq.(12), theboundary integral equationscan be 
discretized as follows: 

 

,࢞ሺݍሻ࢞ூሺܥ ሻݐ߂݊ ൌ ூݍ
୧୬ሺ࢞, ݊Δݐሻ 

                              ൣܣூ;ఈ
ିሺ࢞ሻݒ;ఈሺ݇Δݐሻ െ ூ;ఈܤ

ିሺ࢞ሻݍ;ఈሺ݇Δݐሻ൧



ୀଵ

ெ

ఈୀଵ

. 
 

(15)

 
Here, ܣூ;ఈ

 ሺ࢞ሻ and ܤூ;ఈ
 ሺ࢞ሻ are influencefunctions defined by 

 

ூ;ఈܣ
 ሺ࢞ሻ ൌ

࣬ି

ܮ
 ቈන ܷூሺ࢞, ,࢟ ሻ݀ܵ௬ݏ

ௌഀ

 ݁ିమഏ
ಽ

ିଵ

ୀ

 (16)

ூ;ఈܤ
 ሺ࢞ሻ ൌ

࣬ି

ܮ
 ቈන ܹூሺ࢞, ,࢟ ሻ݀ܵ௬ݏ

ௌഀ

 ݁ିమഏ
ಽ

ିଵ

ୀ

 (17)
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where ܷூሺ࢞, ,࢟ ,࢞ሻand ܹூሺݏ ,࢟  ሻare the Laplace-domain fundamentals solutions and itsݏ
double-layer kernels, respectively. In addition, ݏ denotes the Laplace parameter given 
by ݏ ൌ  .ݐ߂/ሻߞሺߛ

 
 

3.4 Laplace-domain fundamental solutions and double-layer kernels 
As mentioned in the previous section, the time-domain BEM based on the CQM 

requires the fundamental solutions and double-layer kernels in the Laplace-domain. 
The Laplace-domain fundamental solutions ܷூሺ࢞, ,࢟  for 3-Dݏ ሻwith Laplace parameterݏ
poroelastic wave propagation satisfy the following equation: 

 

ூܮ ܷூሺ࢞, ,࢟ ሻݏ ൌ െߜூߜሺ࢞ െ ሻ (18)࢟

 
whereߜሺ࢞ሻshows the Dirac delta function. The differential operator ܮூ  in Eq.(18) is 
Laplace-domain of ܮூ in Eq.(7) and given by 
 

ூܮ ൌ

ۏ
ێ
ێ
ێ
ۍ

߲
ݔ߲

ܥ
߲

ݔ߲
െ ൨ߜߩଶݏ ൜െߙ

߲
ݔ߲

ൠ

ቊߙ
߲

ݔ߲
ቋ

் 1
ଶݏ ݉

Δ 
1
ےܯ

ۑ
ۑ
ۑ
ې

 . (19)

 
Hormander’s theoremis useful to derive the Laplace-domain fundamental 

solutionsfrom Eq.(18). In fact, the Laplace-domain fundamentalsolutions can be 
derived from Eqs.(18) and (19) as follows: 

 

ܷሺ࢞, ,࢟ ሻݏ ൌ
1

ߤߨ4
ቆ

݁ିௌ

ݎ
 ߜ

െ
1

ܵభ
ଶ െ ܵమ

ଶ ቈ
ܵభబ

ଶ െ ܵమ
ଶ

்ܵ
ଶ ቆ

݁ିௌ

ݎ
െ

݁ିௌಽభ

ݎ
ቇ െ

ܵభబ
ଶ െ ܵభ

ଶ

்ܵ
ଶ ቆ

݁ିௌ

ݎ
െ

݁ିௌಽమ

ݎ
ቇ

,

൱ 
 
(20)

ܷସሺ࢞, ,࢟ ሻݏ ൌ െ
1

ߙߨ4
ܵொ

ଶ

ܵభ
ଶ െ ܵమ

ଶ ቈ
݁ିௌಽభ

ݎ
െ

݁ିௌಽమ

ݎ


,

  (21)

ܷସሺ࢞, ,࢟ ሻݏ ൌ
1

ߙߨ4
ܵொ

ଶ

ܵభ
ଶ െ ܵమ

ଶ ቈ
݁ିௌಽభ

ݎ
െ

݁ିௌಽమ

ݎ


,

  (22)

ܷସସሺ࢞, ,࢟ ሻݏ ൌ െ
ܯ
ߨ4

ܵమబ
ଶ

ܵభ
ଶ െ ܵమ

ଶ ቈ൫ܵభబ
ଶ െ ܵమ

ଶ ൯
݁ିௌಽమ

ݎ
െ ൫ܵభబ

ଶ െ ܵభ
ଶ ൯

݁ିௌಽభ

ݎ
 .        (23)

 
Here, ݎ is given by ݎ ൌ ࢞| െ |࢟  and the parameters, ܵభబ

, ܵమబ
, ܵொ, ܵభ

, ܵమ
 and ்ܵ 

aredefined by ܵ ൌ ߢሺܿ/ݏ ൌ ,ଵܮ ,ଶܮ ܳ, ,ଵܮ ଶ,orܶሻ, where ܿܮ ൌ ߱/݇.The parameter ܵொ 
in Eqs.(21) and (22) implies the effect of solid-fluid interaction for 3-D 
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poroelastodynamics. Eqs.(21)and(22), which are thecoupling terms between solid and 
fluid regions, approach to zero if ܵொ ՜ 0. 

Next, we define the double-layer kernels ܹூሺ࢞, ,࢟ ሻݏ , for 3-D poroelastodynamics 
using the Laplace-domain fundamental solutions ܷூሺ࢞, ,࢟ ሻݏ . Defining the 
generalizedtraction ࢜as ݒூ ൌ ݍூܤ acting on a plane with normal vector ݊ gives the 
double-layer kernels ܹூሺ࢞, ,࢟  :ሻif the following equation is solvedݏ

 
ܹூሺ࢞, ,࢟ ሻݏ ൌ ூܤ

௬ ܷሺ࢟, ,࢞ ሻݏ ൌ ூܤ
௬ ܷሺ࢞, ,࢟ ሻ. (24)ݏ

 
Here, the differential operator ܤூ

௬  derived from the Laplace transform of , is given by 
 

ூܤ ൌ

ۏ
ێ
ێ
ێ
ܥۍ

߲
ݔ߲

݊൨ ሼെߙ݊ሽ

ቄെ
ߩ

݉ ݊ቅ
்

െ
1

ଶݏ ݉
߲

ݔ߲
݊ے

ۑ
ۑ
ۑ
ې

. (25)

 
Therefore, each component of the generalized traction࢜ ൌ ሼݐଵ, ,ଶݐ ,ଷݐ  ሽ்is
 

ݐ ൌ ߪ ݊ െ ,݊ߙ  ൌ െݓ݊ (26)

 
where ݐ  and  showsthe traction relation for total stress and fluid pressure flux 
respectively. 
 
4. NUMERICAL EXAMPLES 

 
In this section, we show numerical examples using theproposed CQ-BEM.In all 

numerical examples, the boundary surface of anobject with radius ܽ ൌ 1  was 
discretizedinto 836 boundary elements usinga piecewise constant approximation. The 
material parameters used in theanalyses are listed in Table 1.The accuracy parameter 
߳is߳ ൌ 1.0 ൈ 10ିଵଶ.  

 
 

Table. 1 Material parameters 
 

ߤ
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4.1 Incident waves in the time-domain 
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