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ABSTRACT 

 
In the construction of civil engineering structures, two or more beams are often 

rigidly connected to make it continuous over multiple supports in order to increase the 
structural integrity. These rigid joints are often designed with bolts, rivets and welding. 
The action of in-service loading and environmental effects make these joints semi-rigid, 
which ultimately reduces the structural reliability. In this study, a theoretical model 
based on Euler-Bernoulli beam theory of a two span continuous beam with semi-rigid 
joints is considered. The beam is modeled using 1-D beam element in which two zero 
length rotational springs are considered at both the ends. The damage is simulated by 
reducing the stiffness of rotational springs. The elemental mass and stiffness matrices 
are dependent on the stiffness of the rotational springs, which contribute to the 
changes of the matrices due to semi-rigidity of the joints.  Two damage detection 
algorithms, namely modal curvature (MC) and modal strain energy (MSE), are applied 
to identify the damaged joint. A damage index is defined using the baseline and the 
damaged mode shape. Various damage cases with different levels of noise are studied. 
It is found that damage indices are more pronounced near or at the location of damage. 
 
 
1. INTRODUCTION 
 

The steel structures are often designed for the construction of industrial buildings, 
offshore structures and bridges due to higher reliability and lesser construction time. In 
these structures, the components like beam and columns are modeled with bolts or 
rivets or by welding. Relaxations, yielding of bolts, thread stripping, improper welding 
and the service related loads or an environmental effect degrades the strength of the 
joints over time. Therefore, to ensure life safety and economy, non-destructive 
evaluation (NDE) of the structure is required throughout its life span by deploying 
contact or non-contact type of sensors network. This NDE can be classified into local 
and global identification technique. For the health monitoring of small structure, local 
identification technique can be applied but, for large and complicated structure, 
vibration based global health monitoring techniques are postulated which can assess 
the entire structure at once (Farrar and Doebling, 1997; Medhi et al., 2008; Banerji and 
Chikermane, 2012). 

At the very early stage of vibration based damage identification, shift of resonant 
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frequency was popular one for identification of damage as the frequency is easy to 
obtain and required lesser number of sensors. But computational costs for 
identification, precise measurement made this technique obsolete (Adams et al. 1978, 
Kim and Stubbs 2003, Kim et al. 2007b, Sato 1983, Stubbs and Osegueda 1990). 
Mode shape methods are based on the fact that mode shape is function of the physical 
properties of the structure. Therefore, changes in the physical properties will cause 
detectable changes in the mode shape. Plenty of studies have been found using mode 
shape on beam type of structure. Modal assurance criterion (MAC), Coordinate modal 
assurance criterion (COMAC) and absolute difference between undamaged and 
damaged modal curvature was developed for identification of existence of damage and 
location of damage (West 1984, Yuen 1985, Yao et al. 1990, Pandey et al. 1991 and 
Fox 1992). Laplacian operator was applied on mode shape of a damaged beam for 
identification of location. For lower level of damage, a cubic spline was fitted to the 
Laplacian and from the difference between spline and Laplacian location of damage 
was determined. The technique was also validated experimentally. This method works 
well when mode shapes are extracted from fundamental frequency (Ratcliff 1997 and 
Kim and Stubbs 2002). Shi et al. (1998) formulated elemental modal strain energy 
change ratio for identification of damage. The technique was applied on a simulated 
fixed-fixed beam model, where the damage was introduced by reducing the cross 
section over an element. It was concluded that this kind of damage has no effect on the 
strain energy change ratio (MSECR) of the elements of columns in the frame. The 
damage can be identified from the maximum change of MSECR of the element of 
beams attached to the joint (Shi et al., 1998 and Shi et al., 2002). 

FRF curvature based identification was proposed by Sampaio et al (1999). They 
applied the technique on I-40 bridge data and compared with modal curvature and 
found that this technique is not noise sensitive and work well for lower frequency range. 
Modern signal processing tools like wavelet transform, EMD and Hilbert-Huang 
transform have been used widely to identify the damage parameters. Multi-resolution 
property of this technique makes it popular one. Wavelet transform is performed on 
spatial signal like mode shape, static displacement to determine the location of the 
damage. Again damage time instant is determined from the variation of wavelet 
coefficient over time (Rajasekaran and Varghese, 2005; Wang et al., 1999). 

In model based identification, a numerical model is considered as the baseline 
structure and updates the model until it represents the experimental model. 
Conventional optimization techniques require initial values of parameters near the 
actual values (Zapico et al. 2006). Therefore, population based search algorithm in the 
evolutionary framework are deployed in the field of SHM and its intelligent search 
technique is furnishing promising results. Several studies have been found on the 
identification of damage on a beam type of structure. Objective functions are developed 
using residual forces, natural frequencies, mode shapes etc. from multiple modes.  
Damage is simulated either by providing a rotational spring or by reducing moment of 
inertia of an element (Frishwell et al. 1998, Rao et al. 2004, Baghmisheh et al. 2008 
and Meruane and Heylen 2010). Perera et al. 2007) applied multi-objective genetic 
algorithm to determine the damage. The effectiveness is verified by simulated beam 
with noise and also by using experimental data. As an extension of the previous study, 
Perera et al. (2009) takes into account the modeling error. Depending on the 
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complexity of the problem, numbers of variable increases which makes the problem 
computationally inefficient. Few studies have been found on the search space 
reduction technique using some sampling technique. Again, the results are improved by 
applying gradient search (Perry et al. 2006, Zhang et al. 2010 and Zhang et al. 2010). 

Force displacement relationship for the displacement based structural analysis 
considers fixed-fixed boundary condition. Insufficient clamping force, joint relaxation, 
yielding of bolts, thread stripping and environmental variability reduces the fixity level at 
boundary. Monforton and Wu (1963) developed a modified force displacement 
relationship in terms of elemental stiffness matrix for elastically restrained boundary 
conditions. Using the conjugate beam method of structural analysis they have 
developed a force displacement relationship in terms of a matrix form. Monforton and 
Wu’s formulation can only provide the joint or the member end displacement. Chan and 
Ho (1994) proposed a numerical method for linear and a non-linear dynamic analysis of 
frame with semi-rigid connection. They have derived a shape function for semi-rigid 
boundary condition and used it to formulate elemental matrices. The semi-rigidity of the 
boundary is provided by rotational springs. Chui and Chan (1997) studied vibration and 
deflection characteristics of semi-rigid jointed frames based on Chan and Hos’s (1994) 
formulation. The objective of their study is to inspect serviceability and deflection under 
vibration. They have experimentally determined the rotational spring stiffness.   
From the brief review of past research, it appears that most of the techniques can be 
applied on the beam type of structure to identify the existence, location and quantity of 
damage. Surprisingly, very limited amount of literature is available addressing problems 
involving health monitoring of joints. In this paper, a theoretical model is described for 
vibration based detection and characterization of semi-rigid joints in a continuous 
beam. The elements of the frame model consist of two zero length rotational springs at 
their two ends to represent degree of semi-rigidity. The vibration model of the beam 
accounts for the rotational stiffness of the springs in the stiffness matrix and consistent 
mass matrix. Damage detection algorithms based on MC and MSE are used for health 
monitoring of joints. Using the initial calculations performed on a structure with rigid 
joints as baseline, the damage indices are evaluated at several control points from the 
comparison of the modal response of the monitored structure with semi-rigid joints. 
 
 
2. FORMULATION OF ELEMENTAL MATRICES  
 

In order to monitor the joints, a vibrational analysis which allows joints flexibility is 
adopted. First mass and stiffness matrices are derived neglecting all kinds of non-
linearity. In figure 1(a), the deflected shape of an element is shown. The element 
consists of two springs at the end to consider the end flexibility. Therefore, a relative 
rotation will take place in the inner and outer side of the spring. In inner side, the 

rotations are 1L , 1R  and in outer side, these are 2L , 2R respectively. According to 
Monforton and Wu (1963) – 
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In the above equation, LM , RM , cLr  and cRr are the applied moment and rotational 
spring constants at left and right side of the element respectively. The displacement 
profile over an element is derived as per Chen and Hu’s (1994) formulation.  \ 
 
 
 

 
 

(a) 

(b) 

(c) 
 

Fig. 1(a) Deformation of an element due to end displacement; (b) two span continuous beam model 
(make a roller at the intermediate span); (c) representations of joints using rotational springs 
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In the above expression,  
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where, L and x are the length and spatial distance of a point from the left node of an 
element respectively. 

Stiffness and mass matrix can be determined by the standard procedure. 
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L
T

k EI N x N x dx        (3)

   
0
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m m N x N x dx        (4)

 

In the above expressions, m , E and I are the distributed mass, young modulus and 
moment of inertia, respectively,  over the element.  
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3. HEALTH MONITORING PROCEDURE  
 

Mode shapes corresponding to the first natural frequency has been determined and 
two damage detection algorithms, namely modal curvature and modal strain energy are 
deployed to monitor the joints of the structures. The calculation of damage indices is 
described below.  
 

3.1 Modal curvature 
 

Modal curvature is calculated using the second order central difference scheme. 
The expression can be given as below [Pandey et al. (1991)] –  

 

'' 1 1
2

2i i i
i

y y y
y

h
  

 (5)

 
where, y and h are the mode shape displacement and nodal distance respectively. 
Damage index is calculated from the square of the difference between the damaged 
and undamaged curvature. 
 

2'' ''
dDI y y  (6)

 
3.2 Modal strain energy 

 
Modal strain energy can be expressed as [Lin and Cheng et al. (2008)] – 
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L d y
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 
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where, , ,U E I  and 
2 2/d y dx in the above equation are the strain energy, Young’s 

modulus, moment of inertia and curvature respectively. Damage index is calculated 
from the square of the difference between the damaged and undamaged nodal modal 
strain energy. 
 

2

dDI MSE MSE  (8)

 
 
4. NUMERICAL EXAMPLES AND RESULTS 
 

In order to examine the performance of the proposed methodology, a two span 
continuous beam model as shown in the figure 1 (b) has been considered. The beam 
has two fixed supports at the two ends and one simply support at the middle. The 
number of rotational springs at each joint depends on the number of members meeting 
at a joint as shown in Figure 1(c). For example, the joint involving the fixed support  at 
each end is represented by one rotational spring, whereas, two rotational springs are 
required to represent the simply support at the middle. If a section of any one of the 
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span is considered to be damaged, then two rotational springs shall be introduced to 
represent the damaged section. In that case, the damaged section will be termed as a 
joint. The beam is modeled using 2D beam element in MATLAB environment. The level 
matrices are developed using the shape function give in Eq. (3) and Eq. (4). The value 
of undamaged spring constant is considered as 1.36x107 N-m. To simulate the 
damage, any one of the rotational spring stiffness of a joint is reduced by 90%. Several 
damage locations including both the support joints (fixed and simply support), only one 
of the support joints (fixed or simply support) and a nodal point between two joints are 
studied. Modal analysis is carried out to find out the modal data. Synthetically 
generated zero-mean Gaussian noise has been randomly added to the simulated data. 
It is also considered that the undamaged and the damaged data are collected from the 
same level of noise. The corresponding noise level is 80db. The percentage level of 
noise is multiplied by the standard deviation of each sequence of mode shape and 
randomly added to the components of the sequence. 

 
 
 
 

 
(a)                                                                                 (b) 

Fig. 2 (a) 1st mode shape; (b) 2nd mode shape of the continuous beam for undamaged and different 
damage locations 

 
 
 

Table 1 Damage details and corresponding plots 
 

Damage case number Joint Location Node number Corresponding plot 

1 Fixed support Node 1 Fig 3(a), 4(a) 

2 Simply support Node 11 Fig 3(b), 4(b) 

3 Fixed support Node 21 Fig 3(c), 4(c) 

4 In the span Node 5 Fig 3(d), 4(d) 
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(c)                                                                               (d) 
 

Fig. 3 Curvature damage index (  without noise,  with 80db noise): (a) For damage at 
node 1, (b) For damage at node 11, (c) For damage at node 21, (d) For damage at node 5 

 
 

The second mode shape data are collected, and the MC and the MSE algorithms 
(Eq. 6 & 8) are applied to the data to identify the location of damage. The details of the 
damage cases studied and the corresponding results are reported in Table 1. Figures 
3(a), 3(b), 3(c) and 3(d) are the modal curvature damage index plots for damage at 
node1, damage at node11, damage at node 21 and damage at node 5 respectively. 
The figures 4(a), 4(b), 4(c) and 4(d) are the modal strain energy based damage index 
plots for the same damage cases respectively. It is clear from the above figures that 
both the MC and MSE algorithms can identify the damage when data are collected from 
ideal conditions. It is also found that up to 80db of noise and that the noise has no 
significant effect on the damage indices and the maximum values of damage indices lie 
closer to the location of damage. 

From the different damage cases, it is clear that the proposed methodology can 
identify the location of damage while damage may exist in support, in joints or in span. 
MC damage index identifies the exact location or the node, where the damage is 
located. MSE based DI, on the other hand, identifies the element in which rotational 
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spring stiffnes is attached. In fact, the higher value of DI is found in the element sharing 
the node of the damaged element near the rotational spring. The noise test confirms 
that the proposed methodology can be applied for health monitoring of beam 
structures. 
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(c)                                                                               (d) 
 

Fig. 4 Modal strain energy damage index (  without noise,  with 80db noise): (a) For 
damage at node 1, (b) For damage at node 11, (c) For damage at node 21, (d) For damage node 5 

 
 
 
5. CONCLUSIONS 
 
     In this present study, a health monitoring methodology is presented to identify the 
location of damaged joint in a continuous beam. The beam is modeled with 1-d beam 
elements and elastic boundary conditions.  In the numerical study, joint damage is 
simulated by reducing the rotational spring stiffness. To localize the damaged joint, 
modal curvature and modal strain energy methods are applied. In general, it has been 
observed that the methodology can identify the damage with reasonable noisy data of 
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80dB.  While modal curvature and modal strain energy algorithms show some false 
alarms away from the damaged nodes and elements, respectively, the maximum value 
of DI is always found in the damaged node and the element.  Therefore, this technique 
can be applied to the real life structure in which bolts or rivets may be loosened at the 
beams.   
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