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ABSTRACT 
 

     A real-time dynamic displacement estimation technique is developed by data fusion 
of laser Doppler vibrometer (LDV) and light dectection and ranging (LiDAR). The 
velocity measurement of LDV is low level of noise and sampled at high frequency, but 
has accumulated error during integration. Also, the LiDAR displacement measurement 
has high level of noise and low sampling frequency. The proposed technique combines 
the LDV velocity and LiDAR displacement measurements to estimate dynamic 
displacement with low noise level, high sampling frequency and no integration error. 
Kalman filter based smoothing algorithms are adopted to remove the accumulated error 
during the LDV velocity integration and the high noise of the LiDAR displacement in 
real time. To verify the estimation performance of the technique, a lab-scale test using 
a cantilever beam is performed.  
 
 
1. INTRODUCTION 
 

Dynamic displacement is the most important response of a structure. It describes 
the movement of a structure directly and clearly, as well as can be converted to other 
dynamic responses such as deflection and strain. Moreover, Kim et al (2011) proposed 
that the physical parameters of a structure such as mass, stiffness and damping are 
directly estimated when dynamic displacement is used as input of the state-space 
model of the structure. 

However, it is extremely difficult to directly measure the dynamic displacement of a 
structure due to its nature of relativeness. For example, very complex and cumbersome 
scaffold installation is indispensable for measuring displacement using linear variable 
differential transformer (LDVT). As an alternative, accelerometers are often used in 
indirect displacement calculation by the double integration of the measured 
acceleration, but the displacement calculated from the acceleration has large amount of 
accumulated integration error induced by the sensor bias error of accelerometers. 
Furthermore, the integration error is not linear in most cases since the noise component 
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of the measured signal is not a zero-mean random process (Thong et al. 2004). 
As a response of the necessity for easy and accurate dynamic displacement 

measurement, non-contact sensors have been introduced in recent years. For instance, 
researchers have tried to apply global positioning system (GPS), along with real-time 
kinematics(RTK), into displacement measurement (Hwang et al, 2012). Also, vision 
based sensor has been spotlighted due to its intuitiveness and noncontact nature (Lee 
and Shinozuka, 2006, Kim and Kim, 2011). In addition, many types of direct 
displacement measurement sensor have been introduced, such as radar based sensor, 
laser Doppler vibrometer (LDV) and light detection and ranging (LiDAR). 

Although these sensors introduced some possible approaches to measure dynamic 
displacement in direct and convenient manners, most of them have entry barriers to be 
applied to displacement measurement in practice. GPS has too low resolution and too 
high degree of noise, for instance, even though RTK technology is utilized for 
enhancement of measurement quality (Tamura et al, 2002). Also, in the application of 
vision based sensor, cameras should be closer to the target plates attached on the 
structure for better resolution of obtained images; therefore it is not appropriate for 
measuring large scale structure such as bridges and dams. Although radar based 
sensor and LDV can measure displacement with high sampling rate, high resolution 
and low noise level, they cannot measure sudden change of displacement due to 
impact-like loading such as earthquake (Feigl and Thurber 2009), since the unwrapping 
algorithm for displacement measurement signal reconstruction utilizes arctangent 
method which does not give unique solution. In addition, light detection and ranging 
(LiDAR) can measure dynamic displacement by directly converting its repetitive scan 
data of target measurement points into displacement, but its precision is not sufficient 
for measuring displacement under 1cm. 

In this paper, a novel dynamic displacement estimation technique using two non-
contact sensors is presented. In the proposed method, the velocity measured by LDV 
and the displacement by LiDAR are combined using Kalman filter smoothing 
techniques, so that the drawbacks of LDV and LiDAR measurements can be minimized 
and the displacement with high sampling rate and low noise level can be estimated. 
 
 
2. PROPOSED DYNAMIC DISPLACEMENT ESTIMATION METHOD 
 

As briefly mentioned before, the proposed method fuses the velocity measured by 
LDV and the displacement measured by LiDAR using Kalman filter smoothing 
algorithms. The whole procedure for the method is briefly described in Fig. 1. In this 
section, the working principles and measurement details of LDV and LiDAR are 
discussed, and the Kalman filter smoothing algorithms adopted is introduced.  
 

2.1 Working principle of LDV 
 
LDV can measure the out-of-plane displacement and velocity with high sampling 

rate and low noise. The incident and reflective laser beam have different frequency due 
to Doppler effect, and the intensity of the interfered beam is captured by the photo 
detector. This intensity is divided into two orthogonal electric signals, which are used to 
calculate phase change through arctangent method. Since the phase change is 
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proportional to displacement, the dynamic displacement is calculated directly. However, 
when the phase experiences sudden changes greater than π, the phase is wrongfully 
reconstructed (or unwrapped) from the wrapped signal generated by the arctangent 
method. 

 
 
 

 
 

Fig. 1 Flow chart of the proposed method 
 
 
 

Although LDV has a critical limitation in measuring dynamic displacement, velocity 
measurement of LDV is free from the limitation, since the velocity itself is not affected 
by incorrect calculation by unwrapping process. In analog type velocity decoder, 
frequency of interfered laser beam is directly converted into velocity in frequency-to-
voltage decoder. In digital type velocity decoder, velocity is calculated from the 
derivatives of phase obtained by arctangent method, but it does not require unwrapping 
process. 
 

2.2 Displacement calculation from LiDAR measurement  
 
Originally, LiDAR is intended for 3D terrestrial scanning. It measures the time-of-

flight of emitted laser pulses and transformed the arrival time to distance. The laser 
pulses sweeps 3D space by rotating its body horizontally and the multi-facet mirror 
vertically. However, for measuring dynamic displacement, the body rotation should be 
avoided, since laser pulse need to sweep a target measurement point repetitively. 
Moreover, the facet mirror rotates fast (100 revolution per second), but the body rotates 
very slowly (1 revolution in 8 seconds). 

For this reason, the proposed method utilizes line scan mode of LiDAR device. Line 
scan mode enables laser pulses of LiDAR to sweep along a line by fixing the body 
rotation and rotating the multi-facet mirror only. The scan data contains three 
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measurements – distance from the multi-facet mirror and scan points along with time 
stamp and the vertical angle of multi-facet mirror, i.e., the vertical angle of emitted laser 
pulses. Hence, dynamic displacement can easily obtained using some simple 
trigonometric manipulation and signal processing. Fig. 2 describes brief procedure for 
obtaining dynamic displacement from the scan data of LiDAR.  
 
 
 

 
Fig. 2 Dynamic displacement measurement procedure using LiDAR scan data 

 
 
 

2.3 Kalman filter smoothing techniques for multi-rate data fusion 
 
There are some data fusion algorithms that can be applied to combining two sensor 

records to remove drawbacks of the measurement of a sensor and estimate more 
accurate displacement. For example, Moschas and Stiros (2011) complements the 
drawbacks of GPS sensor by applying high frequency components of acceleration 
measured by accelerometers. Also, Hong et al.(2013) proposed a method to estimate 
displacement from acceleration based on a optimization problem, in which intermittent 
displacement measurements act as constraint of the problem. 

In the proposed method, Kalman filter is adopted for multi-rate data fusion. Kalman 
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filter is known as an optimal state estimator (Kalman 1960) and widely used for various 
purposes such as noise reduction. One of the most important advantages of Kalman 
filter in data fusion is that, unlike the aforementioned methods, noise in the sensor 
measurements is fully considered. Hence, it is much more appropriate to complement 
the high noise components in LiDAR displacement in the study. Kim et al. (2011) 
propose a Kalman filter model based on error dynamics, in which the bias error and 
total error in the measurement are estimated. 

The displacement estimation quality can be further enhanced by Kalman filter 
smoothing (Simon 2006), which is adopted in this study. The estimated displacement 
by Kalman filter tends to be discontinuous since it corrects accumulated integration 
error using measured displacement value. Furthermore, Kalman filter cannot estimate 
displacement precisely in the beginning of the signal since sufficient time steps are 
needed for the convergence of Kalman gain value. However, these two demerits can 
be effectively removed by adopting Kalman filter smoothing. There are three algorithms 
for Kalman filter smoothing – fixed interval, fixed point and fixed lag smoothing. 
Although fixed interval smoothing is widely used in the enhancement of estimation 
quality, this algorithm is not able to do estimation in real time, since it averages forward 
and backward Kalman filter estimation. On the other hands, fixed point and fixed lag 
smoothing algorithms, which is adopted in the proposed method, can estimate states in 
near real time.  

Both of the smoothing algorithms reduce the uncertainty of estimation and enhance 
estimation quality by estimating a state using some future measurements. Suppose we 
have ݇ measurements and want to estimate the displacement at timestep ݇ െ ܰ. Also, 
let us define ݔ௔,௞ is the estimation of ݔ at timestep ܽ when ݇ measurements are made. 
In fixed lag smoothing, the state vector is defined as 
 

ܠ  ൌ ሼݔ௞,௞ ௞ିଵ,௞ݔ ௞ିଶ,௞ݔ ⋯ ௞ିே,௞ሽ் (1)ݔ
 

and the Kalman filter smoothing model is constructed as 
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(2)

 

where ݔ௞
ି  is prior estimate of ݔ௞  and is equivalent to ݔ௞,௞,  and ܣ௞ is a matrix that 

describes the process of the integration of LDV velocity and the accumulated 
integration error in the Kalman filter model, and is defined as 
 

௞ܣ  ൌ ቂ1 ݐ∆
0 1

ቃ (3)

where ∆ݐ is the interval of the timesteps. Also, ݓ௞ and ݒ௞ is the noise of LDV velocity 
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and LiDAR displacement measurements respectively, and ݕ௞ାଵ is LiDAR displacement 
measurement. ܪ௞ is a matrix which express the dynamics of LiDAR, and is defined as 
ሾ1	0ሿ in this case.  

For fixed point smoothing, the state vector is defined in a simpler way,  
 

ܠ  ൌ ൜
௞ݔ
ି

௝,௞ݔ
ൠ ൌ ቄ

௞,௞ݔ
௝,௞ݔ ቅ (4)

 

and the Kalman filter smoothing model is constructed as 
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(5)

 

As shown in eq. (1) and (2), fixed lag smoothing algorithm requires larger size 
matrices of greater computational burden as more future measurements are 
considered, but estimate ݔ௞ିே,௞ାଵ without any iteration. On the other hand, fixed point 
smoothing requires iteration to estimate ݔ௞ିே,௞ାଵ, but the matrix size does not increase 
when the number of the considered future measurements increases. 
 
 
3. LAB SCALE TEST 
 

To demonstrate the performance of the proposed method, a series of lab scale test 
is performed using a steel cantilever beam, whose height is 1m and thickness is 6mm, 
as shown in Fig. 3. Impact hammer is used for the excitation of the beam, and the 
displacement and velocity are measured at the top of the beam.  
 
 
 

 
 

Fig. 3 Test setup 
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The velocity is measured by LDV (PSV-400, Polytec), which is placed 1.6m away 
from the beam, and the displacement is measured by LiDAR (VZ-400, RIEGL). Also, a 
laser displacement sensor (CD4-350, Optex-FA) is installed to measure reference 
displacement to compare with the estimation results of the proposed method. The LDV 
velocity and the reference displacement is sampled at 1024Hz, whereas the LiDAR 
displacement is sampled at 108Hz. 

The measured velocity and displacements are shown in Fig. 4. As mentioned 
before, the displacement measured by LiDAR (Fig. 4(b)) suffers from high level of 
noise. The velocity measured by LDV is converted to displacement through integration 
(Fig. 4(c)), but the resultant displacement is distorted due to the integration error, which 
is caused by the accumulation of sensor bias.  
 
 
 

 
Fig. 4 (a) displacement measured by laser displacement sensor;  

(b) displacement measured by LiDAR; and (c) integration of velocity measured by LDV 
 
 
 

The estimation results of the proposed method are shown in Fig. 5. Figs. 5(a)-(d) 
are the estimated displacements using fixed point smoothing, and (e)-(h) are the result 
from fixed lag smoothing. As shown in the figures, the displacements estimated by two 
smoothing algorithms are identical; however, computational time of fixed lag smoothing 
is 8.4% faster than fixed point smoothing, since standard Kalman filtering is additionally 
performed for initial value setup for iteration at each time step in fixed point smoothing. 

Fig. 5 illustrates that the estimation quality is more improved as more future 
measurements are used in the estimation algorithm. This is also shown in Fig. 6, which 
illustrates the estimated bias error in the LDV velocity. The unstable regions seen on 
the very beginning of the estimations are rapidly suppressed as the time delay 
increases. As a result, the estimated displacement with 0.5 sec delay, which 
corresponds to 640 future measurements, shows a close agreement with the reference 
displacement measured by laser displacement sensor. 
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Fig. 5 Estimation result (closed up from 10 to 18 sec) of fixed point smoothing with time delay of (a) 0 
sec, (b) 0.1 sec, (c) 0.2 sec, (d) 0.5 sec, and fixed lag smoothing with time delay of (e) 0 sec, (f) 0.1 sec, 
(g) 0.2 sec, (h) 0.5 sec 

 

 
Fig. 6 Estimated integration error using Kalman filter smoothing with time delay of  

(a) 0 sec, (b) 0.1 sec, (c) 0.2 sec, (d) 0.5 sec 

 

 
Fig. 7 Comparison of estimation result (0.5 sec delay) and reference displacement measurement 
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4. CONCLUSIONS 
 

This paper proposed a novel displacement measurement method based on the 
multi-rate data fusion of LDV velocity and LiDAR displacement using Kalman filter 
smoothing techniques. The Kalman filter based approach enables the method to 
combine the advantages of LDV and LiDAR effectively and estimate displacement with 
high sampling rate, low noise level and no integration error.  

The displacement estimation method is expected to be applied to various areas 
instead of conventional sensors such as LVDTs and accelerometers. Furthermore, the 
method can be further refined by adopting an effective noise reduction algorithm of 
LiDAR displacement and introducing nonlinear approach on sensor bias estimation. 
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