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ABSTRACT 
 

     A modified procedure is presented for estimating frequencies and the peak values of 
base resultant forces of eccentric irregular buildings due to earthquake ground motions 
characterized by response spectra. This procedure retains the simplicity of the 
methodology presented by the first of the authors in earlier papers, but it presents 
higher accuracy in multi-story buildings composed by very dissimilar types of bents, 
which are usually defined as irregular structures. As a result, the first mode center of 
rigidity (m1-CR) is determined with superior accuracy and this allows the practicing 
engineer to form a structural configuration which will sustain minimum rotational 
response, simply by allocating the resisting elements in such a way that this point lies 
close to the axis passing through the centers of the floor masses. It is demonstrated in 
the companion paper, that inelastic asymmetric building systems with a similar 
structural arrangement are also very effective during an earthquake, since they present 
an almost translational response. The accuracy of the proposed modified procedure is 
illustrated in mixed-bent-type eight-story structures, which are characterized by 
Eurocode (EC8-2004) as irregular structures, and comparisons are made with the 
accurate results obtained by response spectrum analyses using the SAP2000 
computer program. 
 
 
1. INTRODUCTION 
 
     It has been shown that the response of asymmetric buildings having resisting 
elements with stiffness matrices which are proportional to each other (proportionate 
buildings), and in which the centers of mass of all floors lie on the same vertical line, 
can be obtained by determining (i) the response of the corresponding uncoupled multi-
story structure and, (ii) for each mode of vibration of the latter structure, by analyzing an 
associated torsionally coupled single story system (Kan and Chopra 1977a, Hejal and 
Chopra 1989a, Athanatopoulou et al 2006). The same analysis also holds for shear 
type buildings with different static eccentricities at the various floor levels (Kan and 
Chopra 1977b). Recently, this analysis was extended by the first of the authors to non-
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proportional buildings, by introducing the concept of the modal stiffnesses of the bents 
which provide the lateral stiffness of a given structure. It is shown (Georgoussis 2009, 
2012) that the peak elastic response of medium height buildings can be derived by 
analyzing two equivalent single-story modal systems, each of which has a mass equal 
to the k-mode effective mass, 

kM  (k=1,2) of the uncoupled multi-story structure, and is 

supported by elements with stiffnesses equal to the product of 
kM with the first mode 

(when k=1) or second mode (when k=2) squared frequencies of the corresponding real 
bents of the assumed multi-story structure. It is worth noting here that when the 
fundamental period of the uncoupled structure is in the acceleration sensitive region 
(that is, in the flat part of a typical response spectrum), the first mode (k=1) equivalent 
single story system is sufficient to provide reasonable estimates of the peak values of 
base resultant forces. The stiffness centre of this modal system constitutes the first 
mode centre of rigidity, m1-CR (Georgoussis 2010) and when it lies close to the axis 
passing through the centers of floor masses, the rotational response sustained by the 
an elastic asymmetric building system is minimum. This response underlines the 
significance of the accurate evaluation of the location of m1-CR in elastic systems and 
also, as it is demonstrated in the companion paper, in building systems which are 
expected to be deformed well into the inelastic region during a strong ground motion. 
The concept of the aforementioned method is based on the potential of Rayleigh’s 
quotients. These quotients, which traditionally are used to determine a close estimate 
of the first mode frequency of a given structure when an approximate first mode shape 
is used, are also useful in the case of building structures, which belong to the same 
family of shear-flexure cantilever systems and have mode shapes of the same form. 
For example, the first mode deflected shape presents one point of zero displacement 
(the base), the second mode shape presents two points of zero displacement, etc. In 
other words, in building structures, which in the general case may be envisaged as 
cantilever systems, the Rayleigh method can be used to determine the second mode 
frequency from an approximation of the second mode shape. 
The objective of the present work is to improve the accuracy of the aforesaid 
methodology (Georgoussis 2011, 2012) by expressing the stiffnesses of the elements 
of the equivalent single-story modal systems (of either mode, k=1 or 2) by the product 
of the first mode (when k=1) or second mode (when k=2) squared frequencies of the 
actual bents with the corresponding effective modal masses of these bents and not with 
the effective modal mass of the uncoupled structure in the direction of the ground 
motion. The rest of the analysis remains the same, but this modified procedure is 
presenting results of superior accuracy when they are compared with the data obtained 
by response spectrum analyses using the SAP2000 computer program. This is 
demonstrated in structural systems with dissimilar bents, which are classified by EC8-
2004 as irregular buildings. 
 
 
2. ANALYSIS PROCEDURE  
 
     Consider the symmetrical plan of a uniform multistory building, as shown in Fig. 1. 
Although different types of bents are providing the required lateral resistance (i-bents 
are aligned along the x-direction and j-bents along the y-direction), the center of mass 
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(CM) coincides with the center of resistance of the structural system, since the resisting 
elements are pairs of bents aligned in two orthogonal directions, symmetrically to CM. 
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Fig. 1 (a) Elevation of a uniform multi-story building with; (b) symmetrical floor plan 

 
 
 

Assuming that the example structure is subjected to a purely translational ground 
motion along the y-direction, essential dynamic quantities required for a structural 
design (e.g. peak base shears) may be determined from a combination of peak modal 
responses. Such a procedure requires the evaluation of the frequencies ωyk and the 
effective masses 

ykM  (k=1,2,…) of single-degree-of-freedom (SDOF) modal systems. 

As an example, the first mode SDOF system of the assumed building, together with its 
corresponding modal shape, is shown in Figs. 2(a) and (b). 

It is well known that the stiffness of the k-mode SDOF system is equal to  
 

  ykykyk Mk 2                                                         (1) 

 
and an approximate estimate of its value can be obtained by taking into account that 
the stiffness Ky of the example structure (in a matrix form) in the assumed direction is 
equal to 
 

jy KK Σ                                                            (2) 

 
where Kj is the stiffness matrix of the j-bent. Denoting with ωjk the k-mode frequency of 
the subsystem which has the same mass as the actual structure but its lateral stiffness 
depends entirely on the j-bent, a reasonable estimate of the k-mode frequency of the 
complete structure, ωyk, may be determined by the formula (Georgoussis 2009) 
 

22
jkyk Σ                                                          (3) 
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For the first mode of vibration, the expression above represents Southwell’s formula 
(Newmark and Rosenblueth, 1971; Jacobsen and Ayre, 1958) which provides a close 
lower bound of the fundamental frequency of the real structure.  
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Fig. 2 (a) Typical first mode deformation profile of a multi-story building; (b) the first mode single-story 
system with the modal stiffness; (c) the contribution of each bent to the modal stiffness 
 
 
 

Therefore, the k-mode stiffness of Eq.(1) may be approximated by the expression 
 

  jkykjkyk kMk )( 2                                                 (4) 
 

That is, the modal stiffness of the system of Fig. 2(b) can be considered as the sum 
of the modal stiffnesses of the j-bents (Fig. 2(c)), each of which is assumed to be equal 
to 

  ykjkjk Mk 2   (j=1,2,…)                                               (5) 
 

The formula above represents the basis of the simple procedure presented in 
previous papers (Georgoussis 2009, 2012), for the analysis of eccentric non-
proportionate buildings under ground excitations. At present, a modified expression is 
proposed for the evaluation of the k-mode stiffness of the j-bent (subsystem), according 
to the following considerations: 

The k-mode response of the aforementioned subsystem, which has the same mass 
as the actual structure but its lateral stiffness depends entirely on the j-bent (as shown 
in Fig. 3(a) for the first mode of vibration), can be derived from a SDOF modal 
oscillator, which has a stiffness given by 

 
  jkjkjk Mk 2   (j=1,2,…)                                              (6) 

 

where 
jkM is now the k-mode effective mass of the particular j-subsystem, which is, in 

the general case, different from 
ykM . For the first mode of vibration (k=1), this SDOF 

modal oscillator is shown in Fig. 3(b). 
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Since the stiffness of the real structure is given by the sum of the stiffnesses of the j-
bents (j=1,2,...), as is indicated by Eq. (2), it is appropriate to assume that the k-mode 
stiffness, 

ykk , of the corresponding SDOF modal system of the complete structure 

(shown in Fig. 2(a) for the first mode of vibration), which is given by Eq. (1)), is equal to 
the sum of the modal stiffnesses of Eq. (6), i.e. 

 

)()()( 222 



  ykjkyk

yk

jk
jkjkjkjkyk MM

M

M
Mkk  , (k=1,2,..)               (7) 
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Fig. 3 (a) First mode displacement profile of the multi-story subsystem which has a lateral stiffness 
depending on the j-bent; (b) the corresponding SDOF modal system 
 
 
 

This is an expression similar to Eq. (4), but it takes into account the effect of the 
mode shape of the particular bent on the corresponding effective modal mass. The sum 
of the modal stiffnesses of the various bents, given by Eq. (6), is approximating the 
modal stiffness of the complete structure 

ykk  more accurately than the sum of the Eqs. 

(5), and this approach makes the approximate method presented by the first of the 
authors in earlier papers more accurate. As shown in the next section, results (periods 
and base resultant forces) of higher accuracy are derived when the ‘effective’ 

frequencies,  ykjkjkjk MM , instead of jk (j=1,2,..), are used in the approximate 

method.  
More details of how the modal shape of a cantilever system affects the effective 

modal mass 
jkM are provided in Georgoussis (2009). This is shown in a parametric 

form (by means of the method of the continuum approach), for the first three modes of 
vibration (k=1,2,3). As demonstrated, in flexural cantilevers (frames with beams of zero 
stiffness) the first mode effective mass is about 60% of the total mass and this value is 
increasing to more than 75% in the case of frames with stiff beams (shear type 
systems). For the next two modes of vibration, the effective modal masses are higher in 
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flexural cantilevers (approximately 19% and 6.5% respectively for the second and third 
mode of vibration) and they are taking lower values in shear type systems (about 9% 
and 4%).  

Having introduced the concept of the ‘effective’ frequency for each of the resisting 
bents, the modified procedure for estimating periods and peak values of base resultant 
forces of uniform buildings with simple asymmetry is implemented as described by 
Georgoussis (2009, 2012) and, in brief, by the following steps:  
First, by expressing the modal stiffness of any i-bent in the x-direction in a similar 
manner, e.g. 

  ikikik Mk 2                                                         (8) 

 
where ωik, 


ikM  are the k-mode frequency and effective mass respectively of the 

subsystem which has the same mass as the actual structure but its stiffness depends 
entirely on the i-bent. Second, by forming the undamped equation of motion of the k-
mode single-story system, which has a mass equal to 

ykM and it is supported by 

elements having stiffnesses given from Eqs. (6) and (8).  In a coordination system with 
the origin at the center of mass (as shown in Fig. 4(a) for the example structure), this 
equation, for a uni-directional excitation along the y-direction, is as follows 
 

gkkkkk u 1MUKUM                                               (9) 

Where 
 





 

20

01

rykk MM  the effective k-mode mass matrix 

(r: the radius of gyration of the typical floor) 
T

θkkk uU  the corresponding modal displacement vector at CM 
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TT 011  the unit matrix, and 
22 )(Σ jkykjkjkjkyk MMkk     

)( 222222
ikijkjykikijkjwk yxMkykxk     
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
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
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M22   , 




yk

ik
ikik M

M22   

(10)

 
      The quantities jk and ik  are now the ‘effective’ frequencies of the j and i-bents 

respectively and it is evident that when the lateral stiffness of a given building is 
composed by the same type of bents (e.g. flexural shear walls), they are respectively 
equal to jk and ik . Full description of the modal quantities derived by this analysis is 
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given in Georgoussis (2009). It is worth noticing here that the matrix Eq. (9), for the first 
mode (k=1) single-story system, provides the response quantities of the first two modes 
of vibration of the real structure. Therefore, when the stiffness matrix of Eq. (9), for k=1, 
is decoupled, the first two modes of vibration (translational and rotational) are 
decoupled and in the case of a ground motion along the y-direction the response for a 
low height building will be practically translational. The stiffness matrix of Eq. (9) is 
decoupled when the term )(   wykywk kk  is equal to zero. This condition specifies that the 

first mode center of rigidity (m1-CR) of the corresponding single-story system coincides 
with CM. Generally, the x-coordination of m1-CR (measured from CM) is given as 
 

)(

)(
2
1

2
1

1
j

jj
CRm

x
x







                                                      (11) 

 
And, evidently when xm1-CR=0 there is a coincidence of m1-CR and CM. 

 
 
3. SYSTEMS ANALYZED  
 

To illustrate the application and accuracy of the proposed method, the example 
structure shown in Fig. 4(a) was analyzed. This is an 8-story monosymmetric uniform 
building structure with a floor plan 15x10m, having two structural walls (Wa and Wb) 
and a moment resisting frame (FR) along the y-direction and a pair of wall bents (Wx) 
oriented in the axis of symmetry. The structural walls Wa and Wb are of cross sections 
30x500cm and 30x400cm respectively, while the moment resisting frame FR consists 
of two 80x80cm columns, 6m apart, connected by beams of a cross section 35x70cm. 
The x-direction wall bents Wx are of the same dimensions as Wb and they are located 
symmetrically to CM at distances of 3m. The total mass per floor is m=120kNs2/m, the 
radius of gyration about CM is r= 5.204m, the story height is 3.5m and the modulus of 
elasticity (E) is assumed equal to 25x106 kN/m2.  The center of mass at each floor lies 
on a vertical line passing through the centroid of the orthogonal floor plan at each level. 
To investigate the accuracy of the proposed method to a broader range of building 
structures, different structural configurations of the example structure are examined as 
follows: wall Wa and frame FR are assumed to be located at a fixed positions, the first 
on the left of CM in a distance equal to 4m and the second on the right of CM at a 
distance of 6m, while bent Wb is taking all the possible locations along the x-axis.  

The accuracy of the proposed modified procedure to predict the resultant forces, in 
the case of a dynamic excitation (along the y-direction) characterized by a flat or the 
EC8-2004 recommended response spectrum (Fig. 4(b)) is examined by comparison 
with the results of a response spectrum analysis performed by means of the computer 
program SAP2000-V11. These results are also compared with those obtained by the 
methodology presented in earlier papers (Georgoussis 2009, 2012). In practical terms, 
the difference between the two approximate procedures is based on the grounds that at 
present the formulation of Eqs. (10) is based on the ‘effective’ frequencies jk and ik , 

while in the older version this formulation is based on the real frequencies of the 
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various bents jk and ik . 

To apply the proposed method, the first pair of frequencies of the various bent-
subsystems is required, and also their effective modal masses. Denoting with M the 
total mass of the structure (M=8m=960kNs2/m), these quantities for wall Wa are as 
follows 

ωwa1=5.922/s, ωwa2=34.278/s and 66.011   MMM wawa , 212.02 

waM ,  

For wall Wb (and Wx): ωwb1=4.261/s, ωwb2=25.397/s and 658.01 

wbM , 208.02 


wbM . 

For frame FR: ωf1=3.529/s, ωf2=11.771/s and 774.01 

fM , 116.02 


fM  

The first two effective modal masses of the uncoupled structure, in the y-direction,, 
normalized in respect to the total mass, are respectively equal to 668.011   MMM yy , 

202.02 

yM . From these data, the effective frequencies given by the last of Eqs. (10), 

are equal to 
For wall Wa: swa /886.51  , swa /116.352  , for wall Wb (and Wx): swb /229.41  ,  

swb /771.252   and for frame FR: sf /789.31  , sf /920.82  . 

 
 
 

0.15

0.3 0.6 0.9 1.2 1.5

T(s)

A/g

Flat

Linear Hyperbolic

(b) EC8-2004 spectrum

1.00

0.75

0.50

0.25
0.4

Wa
Wb

FR

CM
x

y

4m 6m

(a) Model structure

 x

15m

10
m

6m

Wx

Wx

 
Fig. 4 (a) Floor plan of example structure; (b) Code-recommended design spectrum 

 
 
 
4. DISCUSSION OF RESULTS 
 

The first two periods of vibration of the example structure of Fig. 4(a), computed by 
the proposed modified method (Tm) for different locations of the frame system FR 
(indicated by the normalized coordinate rxx  ), are shown in Fig. 5, together with the 
accurate computer values (Tcom) and those obtained by the methodology presented by 
the first of the authors in earlier papers (Tea). For the first mode of vibration, the 
approximate values T1m (thick continuous green line) are exceeding, in all cases, the 
accurate computer values T1com (thick continuous black line) but the error is less than 
2.6%. A comparison between T1m and T1ea (thick continuous red line) shows that in all 
cases the modified method predicts more accurately the computer data (the T1m line is 
closer to the T1com curve than the T1ea line). Similar are the data for the second mode of 
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vibration (thick dotted lines in Fig. 5) although both the approximate results (T2m and 
T2ea) are closer to the accurate ones (T2com). The maximum deviation of the T2m curve is 
now 3%. In Fig. 5 are also shown the periods of the next two higher modes of vibration 
(third and forth) although these modes have a negligible effect on the overall response 
of low or medium height structures. For the third mode of vibration (thin continuous 
lines in Fig. 5) it is the procedure presented in the previous papers which presents 
higher accuracy: the T3ea red curve is closer to the T3com black curve than the green line 
of the T3mvalues. In the fourth mode of vibration (thin dotted lines in Fig. 5) the 
proposed modified method is presenting a slightly higher accuracy, although the three 
curves (T4com, T4m and T4ea) are almost coincident. 
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Fig. 5 Periods of vibration of the example structure 

 
 
 

Base shears (in the y-direction) and torques, for the case of a flat spectrum, are 
shown in Figs. 6(a) and (b). Normalized shears and torques denoted as 2m,1V  and 2m,1T   

(blue continuous lines) respectively, represent the approximate peak results obtained 
by the proposed modified procedure through the CQC rule on the grounds of the peak 
modal data derived from the analysis of the first mode (k=1) equivalent single-story 
system. The second mode (k=2) equivalent single-story system provides the 
corresponding data of the second pair of vibration modes, denoted as 4m,3V  and 

4m,3T  (blue dashed lines) respectively. The total normalized resultant forces mV and mT  

(green lines) are computed from the sets 2m,1V  , 4m,3V  and 2m,1T  , 4m,3T  by means of the 

SRSS combination rule. All the aforesaid resultant forces are normalized in respect to 
the total shear, along the y-direction, of the uncoupled structure and base torques are 
also divided by r. In these figures are also shown (i) the data obtained by the 
methodology presented in earlier papers (total normalized resultant forces obtained as 
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above and presented by the eaV and eaT red lines) and (ii) the accurate data comV and 

comT (black lines) given by the computer program SAP2000-V11 on the basis of the first 

12 peak modal values combined according to the CQC rule (the damping ratio in each 
mode of vibration was taken equal to 5%). The results for the case of the Eurocode 8 
response spectrum of Fig.4(b) are shown in Figs. 7(a) and (b).  
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Fig. 6  Peak base shears: (a) and torques; (b) for the case of a flat spectrum 

 
 
 

Envisaging Figs. (6) and (7), a first rough conclusion is that the proposed modified 
procedure provides data (green lines) closer to those of the computer analysis (black 
lines) than the approach presented by Georgoussis (2009, 2012) in earlier papers (red 
lines). The second overall observation is that the curves obtained from the Eurocode 
spectrum show an increased contribution of the second mode (k=2) equivalent single-
story system (higher values of 4m,3V   and 4m,3T  ) on the total response of the example 

structures. This is attributed to two reasons: (i) the flat part of the response spectrum of 
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Figure 4(b) extents in the period range from 0.15 to 0.6sec, and (ii) the first two periods 
of vibration of all the examined structural configurations vary in the range 0.801- 0.989s 
for the first period, and in the range 0.593 – 0.756s for the second period of vibration.  
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Fig. 7 Peak base shears (a) and torques (b) for the case of EC8-2004 spectrum 

 
 
 

This means that in the case of the Eurocode spectrum the first mode peak 
acceleration is lower than that of the second mode and therefore the contribution of the 
latter mode is higher than in the case of the flat spectrum. It is reminded here that for 
buildings with the fundamental lateral vibration period in the acceleration sensitive 
region (that is, in the flat part of the response spectrum of Fig. 4(b)) the first two modes 
of vibration are adequate to obtain a reasonable estimate of the response of a building 
structure (Hejal and Chopra 1989b,c). It is of particular interest that the location of wall 
Wb which produces a normalized torque 2m,1T  equal to zero (which means that m1-CR 

coincides with CM), represents the structural configuration which sustains minimum 
torsional response (minimum mT ). For the assumed structural configurations, the 
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aforementioned location of Wb is equal to 55.0x and, as can be seen from Figs. 6(b) 
and 7(b), at this location of Wb the torsional response derived by the SAP2000 
software is practically the minimum.  

According to EC8-2004 (Clause 4.2.3.2), most of the structural configurations 
examined herewith should be considered as irregular buildings. There are basically two 
requirements which classify a building as a regular system: (i) that the distance 
between the centers of stiffness and mass is less than 30% of the ‘torsional radius’, and 
(ii) the ‘torsional radius’ is higher than the radius of gyration. According to paragraph (9) 
of the clause above, the centers of stiffness and the torsional radius may be calculated 
as those of the moments of inertia of the cross-sections of the vertical members. This 
means that none of the aforementioned requirements is satisfied when wall Wb ‘moves’ 
from the far left position (x=-7.5m) to the right of CM up to the location of x=3.6m. 
Besides, the second of the requirements above is not satisfied unless the wall Wb 
‘moves’ to locations x>5.6m. Therefore, considering the closeness of the results 
derived by the proposed modified procedure with those of the computer SAP2000 
program, it can be said that the proposed methodology may be applied with confidence 
to both regular and irregular in plan building systems. Regarding the definition of the 
center of stiffness of multi-story buildings and the long discussion about it in the relative 
literature, it must be noticed that the definition given by EC8-2004 is not a successful 
one. It would be expected that when this center (as it is described above) coincides 
with CM, the sustained torsion should be minimum. Using the data of the example 
structure, this means that minimum torsion would occur when the wall Wb is located at 
the far right side (x=7.5m) of the deck. The results presented in Figs. (6) and (7) simply 
indicate that minimum base torsion is attained when x=0.55x5.204=2.86m, that is, 
when the first mode center of rigidity (m1-CR) coincides with CM.    
 
 
5. CONCLUSIONS 
 

Frequencies and basic earthquake response (resultant base shears and torque) of 
eccentric, medium height uniform buildings, composed by dissimilar bents,  can be 
estimated from the analysis of two equivalent, single-story, modal systems, the masses 
of which are determined from the first two vibration modes of the uncoupled multi-story 
structure and the stiffnesses of the resisting elements are determined from the 
corresponding individual bents when they are assumed to have, as planar frames, the 
mass of the complete structure. The proposed analysis improves the accuracy of the 
methodology developed in the past and provides the location of first mode center of 
rigidity with superior accuracy. The main property of this point is that when it lies close 
to the axis passing through the centers of floor masses, the response of a building 
structure is basically translational. Therefore, as it is quite easy to determine this point 
with simple hand calculations, the propose procedure can be used in the preliminary 
stage of a structural application to determine the optimum structural arrangement in 
terms of minimum torsional response. 

To illustrate the application and accuracy of the proposed modified procedure on 
medium height mixed-bent-type buildings, which are classified by EC8-2004 as 
irregular buildings, a number of example structures are analyzed and these results are 
compared (i) with the accurate data received by the academic computer program 
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SAP2000-V11, and (ii) with the results of the procedure presented in previous papers 
(Georgoussis 2011, 2012). Acknowledging the limitations of this work and the needs for 
further studies on different building configurations, the following principal conclusions 
are drawn: 

1. The proposed modified procedure provides with a reasonable accuracy the first 
pair of frequencies of common 8-story monosymmetric buildings with dissimilar 
bents, with an error less than 3%. Such a deviation is considered acceptable for 
design purposes and is less than that of the procedure presented in earlier 
papers.  

2. Resultant base shears and torques are also accurately predicted from the 
analysis of the aforesaid equivalent, single-story, modal systems. In particular, 
the resultant base shear is basically obtained from the first mode equivalent 
system, but for the base torque the response of both systems should be taken 
into account.   

3. The definition given by EC8-2004 about the center of stiffness of multi-story 
buildings is unsuccessful. It would be expected that when this point lies on the 
mass axis the torsional response of a building structure would be minimum. The 
results presented herewith show that this occurs only when the first mode center 
of rigidity lies in the mass axis. 
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