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ABSTRACT 
 

    The influence of randomness in sleeper spacing on the resonant behavior of a 
railway track is investigated. We consider railway track vibrations excited by a harmonic 
load. The track is modeled by a finite but sufficiently long rail supported by a number of 
sleepers. The influence of position of each sleeper on the pinned-pinned resonance 
mode is investigated through numerical analyses. Furthermore, the first- and second-
order derivatives of the response with respect to the position of sleepers are evaluated. 
Based on these results, the availability of the perturbation method for the evaluation of 
the statistical descriptors such as the mean value and variance of the resonant 
response is also discussed under a probability density function of the sleeper spacing.  
 
 
1. INTRODUCTION 
 
     A railway track composed of continuous welded rails and sleepers can be regarded 
as a periodic structure due to the discrete sleeper supports. Owing to this periodicity 
the band structure of wave modes propagating in the track is characterized by the 
existence of frequency ranges called stop bands or band gaps in which the propagation 
of bending waves along the rail is forbidden (Mead 1970, Hosking 2004). In particular, 
the standing wave modes locating at these band edges dominate the resonant 
response of the track. Therefore, it is essential for the understanding of dynamic 
behavior of a track to obtain the dispersion curves.  
     However, in general, railway tracks have non-uniform sleeper spacing. This 
irregularity may affect the vibration behavior of the track. For example, through 
numerical experiments Wu and Thompson (2000) found that the so-called pinned-
pinned resonance mode which has nodes at each sleeper support is suppressed due to 
the scatter in the sleeper spacing. Heckl (1995) has studied the effect of random 
sleeper spacing from the viewpoint of noise reduction, and concluded that the 
randomization contributes to the reduction of rolling noise at 1200Hz or lower. The 
authors (Batjargal 2012) have attempted to optimize the sleeper arrangement based on 
an objective function defined by the wave energy transmission and accomplished the 
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vibration reduction. Although, these papers have revealed beneficial features of the 
deviation from a periodicity, the introduction of disorder in a periodic structure might 
amplify the vibration due to the localization of wave energy (Duclos 2004, Li 2005). 
Nordborg (1998) has considered the irregularities in sleeper spacing and support 
stiffness, and found that the track vibration level can be increased at rather low 
frequencies.  
     While the qualitative relationship between the randomness in a track and its 
response has been deduced from numerical simulations, the dependence of the 
dynamic response upon individual varying parameters such as the position of a sleeper 
has never been clarified. Practically, the grasp of the sensitivity of vibration behavior to 
variations in certain stochastic properties will contribute to the technical progress in the 
design and maintenance of tracks.  
     Once the mechanical conditions including the irregularities are determined for a 
numerical model, dynamic response of the track can be determined readily. 
Nevertheless, the extraction of some statistical data such as the mean value and 
variance of the response will consume considerable computation time. Therefore, in 
order to save the computational effort, some mathematical approaches such as the 
perturbation method will be helpful for the evaluation of statistical parameters. 
Oscarsson (2002) has assessed the influence of stochastic properties on the train-track 
dynamic interaction based on the first-order perturbation technique. Since the first-order 
approximation cannot predict the relationship between the scatter and the mean value 
of the response, higher order estimation is needed for this purpose.  
     In this paper the influence of randomness in the sleeper spacing on the resonant 
behavior of a railway track is investigated, in the context of the vibration reduction. To 
achieve this, we analyze railway track vibrations excited by a harmonic load. In the 
numerical analyses, the track is modeled by a finite but sufficiently long rail supported 
by a number of sleepers. The influence of the position of each sleeper on the pinned-
pinned resonance mode is examined through numerical simulations for tracks having 
different disordered sleeper distributions. From this result, the first- and second-order 
derivatives of the response amplitude with respect to the position of individual sleepers 
are evaluated by means of the finite deference method. Furthermore, direct simulations 
are carried out for tracks generated by a probability density function of the sleeper 
position, and the relationships between the variance of deviation in the sleeper location 
and the mean value and variance of the resonant amplitude are obtained. Based on 
these results, the availability of the perturbation method for the evaluation of the 
statistical descriptors is also discussed.  
 
 
2. STATISTICAL RELATIONSHIP BETWEEN POSITION AND SPACING OF 
SLEEPERS 
 
     In this paper we formulate the influence of the disordered sleeper distribution on the 
resonant behavior in terms of the sleeper position. However, it may be rather practical 
to measure the sleeper spacing than the sleeper position. Consequently, in general, 
some statistical properties about the sleeper spacing will be obtained as primary data. 
Hence, this section is devoted to derive the statistical relationship between the position 
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and the spacing of sleepers.  
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Fig. 1 Track model 

 
 
     2.1 Position and spacing of sleepers 
     Although a railway track with continuous welded rails can be modeled as an infinite 
structure, in this study a finite rail supported by N sleepers is considered. The sleepers 
are numbered from left to right as illustrated in Fig. 1. In the figure xi is the position of 
the ith sleeper and Li is the distance between the ith and i+1th sleepers, i.e. 
 

).1,1(    ,1   NixxL iii                                           (1) 

 
The statistical relationship between the position and the spacing of sleepers will 
depend on the way in which the sleeper arrangement is made. We consider two ways 
of Case 1 and Case 2. In the former case, the location of the i+1th sleeper is 
determined based on the position of the ith sleeper sequentially. While in the latter 
case, all sleeper positions are determined simultaneously in a range of the track, so 
that a regular spacing can be realized.  
 
     2.2 Statistical relationship in Case 1 
     During the installation process, the position of the i+1th sleeper xi+1 is determined 
such that LLi  . This procedure can be formulated by  

 
,1 iii Lxx                                                    (2) 

 
where L is the average of sleeper spacing and i  is the deviation in the position of the 

i+1th sleeper. We assume that the mean value and the variance of i  are given by 

E(εi)=0 and Var(εi)=
2
  respectively, and the deviations of different sleepers are 

statistically independent, i.e. Cov(εi, εj)=0 for i≠j.  
     The deviation of sleeper spacing μi is defined by 
 

.LLii                                                         (3) 

 
From Eqs.(2) and (3), the following relation is obtained,  
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.ii                                                             (4) 
 

Therefore, E(μi)=0, Var(μi)=
2
 , Cov(μi, μj)=0 for i≠j.  

     Furthermore, Eq.(2) can be rewritten as 
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Since E(εi)=0 and Cov(εi, εj)=0 for i≠j, Eq.(5) leads to the next relations,  
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11 ixVariLxE ii                                            (6) 

 
Notice that, in Case 1, the variance of the sleeper position increases proportionally to 
the sleeper number.  
 
     2.3 Statistical relationship in Case 2 
     In this case,  xi is given by 
 

,)1( ii Lix                                                       (7) 
 

where E(εi)=0, Var(εi)=
2
  and Cov(εi, εj)=0 for i≠j, as in Case 1. From this equation, the 

mean value of xi is obviously given by E(xi)=(i-1)L.  
     Substituting Eq.(7) into Eq.(1), we can obtain the ith sleeper spacing as, 
 

.1 iii LL                                                      (8) 
 
Therefore, the deviation of sleeper spacing μi is given by 
 

.1 iii                                                       (9) 
 
The mean value, variance and covariance of μi are thus obtained as 
 














).1||(        0

),1||(   
),(

,2:)(

,0)(

2

22

ji

ji
Cov

Var

E

ji

i

i












                                    (10) 

 
Consequently, the variance and covariance depend on the way of sleeper 
arrangement.  
     In general, at least in Japan, the sleeper spacing is specified by the number of 
sleepers installed in a certain distance. Since this condition corresponds to Case 2, the 
disorder in the sleeper spacing will be governed by Eq.(10). Therefore, the following 
discussion is conducted based on Case 2.  
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Fig. 2 Track model subjected to a harmonic loading 

 
 
3. PERTURBATION ANALYSIS OF RESONANT BEHAVIOR 
 
     Let us consider a railway track subjected to a harmonic load as shown in Fig. 2. This 
loading condition can exert a dominant resonance response corresponding to the 
pinned-pinned mode which is characterized by a motion having nodes at each rail 
support. This standing wave mode is important in the context of vibration and noise 
reduction, because it can be excited prominently due to running wheels. Therefore, in 
this study we exclusively focus on this resonant response.  
     Steady state amplitude of the rail deflection will depend on the loading frequency 
and each sleeper position. Its value can thus be regarded as a function of these 
variables. In this case, the amplitude can be expanded in terms of the perturbations 
from the dominant resonant frequency f0 and the regular spacing, i.e. 
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where A is the amplitude at the loading point, ),(: 1 N ε , A0 is the resonant 

amplitude of the unperturbed track at f0, and ijiiji AAAA  ,,,  are coefficients. 0ff   is 

the deviation in the loading frequency f from f0. Since the resonant amplitude 
)0,0(0 AA   is an extreme value with respect to the frequency, the following condition is 

satisfied,  
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From Eqs.(11) and (12), the derivative of A with respect to β can be approximated as 
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Imposing the resonant condition 0/  A  on Eq.(13), we can obtain the resonant 
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frequency:  
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Abe et al. (2011) found that the first-order term on the right-hand side of Eq.(14) is 
negligible. Consequently, the resonant frequency β can be expressed as 
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Substitution of Eq.(15) into (11) results in the following equation: 
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From this equation, it can be seen that the dependence of the resonant frequency on 
the sleeper location contributes to the fourth-order or higher. The second-order 
approximation of the resonant amplitude is given by  
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Eq.(17) leads to the mean value and the variance of A approximated by the second-
order moment as 
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Notice that the variance by the second-order moment in Eq.(18) is identical with that 
obtained by the first-order perturbation. The variance calculated from Eq.(17) can 
originally contain forth-order terms. The availability of such higher-order evaluation will 
be discussed in the next section.  
 
 
4. NUMERICAL EXAMPLES 

 
     4.1 Analytical conditions 
     In this section we investigate the influence of the randomness in sleeper position on 
the pinned-pinned resonance mode. We examine whether there is any relationship 
between the resonant response amplitude and the deviation in the sleeper position. For 
this purpose, we analyze the change in the resonant response amplitude at the loading 
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position due to the deviation of location introduced into a certain sleeper. 
     The analytical conditions are illustrated in Fig. 3. A track consisting of a JIS 50kgN 
rail and sleepers of 100kg per one rail is considered. The values of pad stiffness are 

rk =110MN/m and sk =30MN/m, where rk  and sk  are spring constants of rail and 

sleeper pads. In the analysis the rail is modeled by a Timoshenko beam and the 
sleeper is represented by a mass. The rail is supported by 360 sleepers and the 
standard sleeper spacing is 60cm (L=60cm), i.e. the total length is 216m. Notice that, if 
some adequate damping exists, this track length will be sufficient to suppress the 
waves reflecting from the rail ends. In order to introduce the damping in the track, the 
pads are represented by complex stiffness as  
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                                                   (19) 

 
where 1i , ω is the angular frequency and g is a damping coefficient. In the 
following analyses, g=0.01(s/rad). A harmonic loading is located at the mid-span 
between the 180th and 181st sleepers. The influence of sleeper spacing is discussed 
based on the resonance deflection at the loading position.  
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Fig. 3 Track model that nth sleeper location is shifted 

 
 
 
     4.2 Relationship between sleeper position and response amplitude 
    Fig. 4 shows the relationship between the deviation in the position of a sleeper from 
the periodicity and the resonant response amplitude at the loading point. In the figure 
the resonant response amplitude A is shown as a function of the deviation n  in the nth 

(n=181, 220, 260) sleeper location. Needless to say, this behavior is symmetry with 
respect to the sleeper number, e.g. the influence of the 180th sleeper can be identified 
by that of the 181st sleeper which locates on the opposite side of the load. The figure 
shows that, in a region of comparatively small deviation (-0.01m< n <0.01m), the 

resonant response amplitude increases and shows a convex downward curve. This 
result implies that the vibration reaction can be larger than that of the resonance mode 
by introducing a small disturbance in the periodicity. The same phenomenon has been 
found by Duclos and Clément (2004) for water wave transmission in an array of 
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cylindrical piles. On the other hand, the resonant response amplitude reduces at larger 
deviation (  > 0.01m). The influence of the deviation in a sleeper reduces with 

increasing distance between the loading point and the sleeper. In particular, the 
resonant behavior is very sensitive to the deviation of adjacent sleepers.  
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Fig. 4 Relation between   and A 

 
 
 
     4.3 Evaluation of stochastic behavior 
    To examine the availability of the approximation Eq.(18), we performed numerical 
experiments for the track that the disorder in the sleeper spacing is governed by the 
Gaussian distribution characterized by Eq.(10). The track modeling is the same as 
shown in 4.1.  
   Fig. 5 and Fig. 6 are showing the relationships of 2

 -E(A) and 2
 -Var(A), 

respectively. The expectation and the variance of A are evaluated by 1000 random 
tracks generated for each 2

 . From these figures it is confirmed that both E(A) and 

Var(A) increase temporarily with increasing 2
  but decrease thereafter. Since, in 

general, the value of 2
  in the actual railway track is far larger than the range shown in 

the figure, practically the mean value of the amplitude will be reduced due to the 
randomness. Although the variance of the response is sensitive to the degree of scatter 
in the sleeper location as well as that of the mean value, it becomes less sensitive to 
the deviation at larger 2

 . From this fact, it can be expected that, in many cases, the 

resonant amplitude decreases with increasing disturbance in the sleeper location, while 
it may have rather large values in some cases.  
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Fig.7 Approximation of relation 
between 2

 and E(A) 
Fig.8 Approximation of relation 
between 2

 and Var(A) 
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Fig. 5 Relation between 2

 and E(A) Fig. 6 Relation between 2
 and Var(A) 
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The approximations of E(A) and Var(A) by Eq.(18) are shown by solid lines in Fig. 7 
and Fig. 8. In these figures the experimental results shown in Figs.5 and 6 are also 
plotted. It can be observed that the error of approximation becomes large with 
increasing 2

 . The applicable range of the second-order perturbation is restricted to 
72 102  (m2). This value is very smaller than the variance in the actual railway 

tracks. Moreover, even if the forth-order terms are considered, it contributes only to the 
quadratic components in Figs.7 and 8. Therefore, it is obvious that the forth-order 
approximation is invalid for the evaluation of E(A) and Var(A) at a stochastic level which 
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will be observed in a track. Consequently, application of the perturbation method to the 
evaluation of statistical parameters of resonant amplitude will be difficult.  
 
 
 
5. CONCLUSIONS 
 

In this paper, we investigated the influence of random sleeper spacing on the 
resonant behavior of a railway track. Through numerical analyses, it was found that the 
resonance response is amplified at a comparatively small deviation in the sleeper 
position, while it will decrease for rather a large deviation. Also, we have discussed the 
availability of the perturbation method for the evaluation of the statistical descriptors. 
Although the perturbation method can approximate the statistical parameters in 
theoretically, the applicable range is limited to very small deviation. Therefore, it is not 
practical to evaluate the statistical values by the perturbation approach.   
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