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ABSTRACT 
 

The elastoplastic Cosserat continuum models for both two and three dimensional 
pressure-dependent materials are presented in this paper. The non-associated 
Drucker-Prager yield criterion is particularly considered. The size effects of a cantilever 
beam, the mesh-independent solution of a shear structure, the strain localization failure 
due to strain softening in excavation and the strain localization failure due to material 
dilatancy in retaining structure are studied by the developed model with corresponding 
finite element methods. Numerical results illustrate that the present finite element 
methods based on the proposed Cosserat continuum models are capable of reflecting 
the size effects, ensuring mesh-independent solution, preserving the well-posedness of 
the boundary value problem characterized by the strain localization due to strain 
softening and material dilatancy and simulating the entire progressive failure process 
occurring in engineering structures.  
 
1. Introduction 
 

When strain softening constitutive behavior or non-associated yield criterion in certain 
condition is incorporated into a computational model in the frame of classical plastic 
continuum, the initial and boundary value problem of the model will become ill-posed, 
resulting in pathologically mesh-dependent solutions (Troncone 2005, Pande and 
Pietruszczak 1986, Li et al 2002). 

To accurately simulate strain localization phenomena characterized by occurrence 
and severe development of the deformation localized into narrow bands of intense 
irreversible strain caused by strain softening or the non-associated plasticity, it is 
required to introduce some type of regularization mechanism into the classical 
continuum model to preserve the well-posedness of the localization problem. One of the 
radical approaches to introduce the regularization mechanism into the model is to utilize  
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the Cosserat micro-polar continuum theory, in which high-order continuum structures 
are introduced. Among the work, which utilize the Cosserat continuum model as the 
regularization approach to analyze strain localization problems, are contributions of 
(Muhlhaus et al 1987, Muhlhaus 1989； de Borst et al 1991, de Borst 1991,1993; 
Tejchman et al 1993, 1996； Steinmann 1994, 1999；lordache and Willam 1998; Manzari 
2004; Li and Tang 2005; Khoei et al 2007). (Ehlers et al 1998) presented the theoretical 
and numerical methods for micropolar elasto-plastic solid materials in the framework of 
the Theory of Porous Media. 

The above-mentioned research on Cosserat continuum is mainly focused on 2D 
plane strain problems, despite the fact that the actual engineering structures are usually 
three dimensional. In three dimensional Cosserat continuum, there are six independent 
degrees-of-freedom at each material point, i.e. three conventional translational degrees 
of freedom and three rotational degrees of freedom, and eighteen stress components 
with corresponding strain components including the torsional and bending components, 
which makes the Cosserat theory more appropriate in predicting the deformation of the 
structure when it bears a tensional moment or bending moment. Recently, (Rubin 2005; 
Liu et al. 2007; Azadeh and Curran 2009; Azadeh et al. 2009) contributed to the 
numerical solution of structures such as shells, cantilevers and plates based on three 
dimensional Cosserat theories. Application to solid continuum, (Khoei et al 2010) 
formulated an elasto-plastic pressure-independent J2 flow model within the framework 
of the Cosserat continuum.  

In this paper, we present the elastoplastic Cosserat continuum models for both two 
and three dimensional pressure-dependent materials. To reveal the capability and 
performance of the models developed, the size effects of a cantilever beam, the 
mesh-independent solution of a shear structure, and the strain localization phenomena 
due to strain softening and material dilatancy are analyzed with corresponding finite 
element methods. Numerical results illustrate that as compared with the performance of 
the finite element procedure based on the classical continuum model, the present finite 
element methods based on the proposed Cosserat continuum models are capable of 
reflecting the size effects, ensuring mesh-independent solution, preserving the 
well-posedness of the boundary value problem characterized by the strain localization 
due to strain softening and material and dilatancy and simulating the entire progressive 
failure process occurring in engineering structures. 

 
2. The governing equations of elastic Cosserat continuum  

 
2.1 2D Cosserat continuum 
Each material point in the two dimensional Cosserat continuum has three 

degrees-of-freedom, i.e. two translational degrees-of-freedom yx uu ,  and one rotational 
degree-of-freedom z  with the rotation axis orthogonal to the two dimensional plane, 

 
Tu ][ zyx uu                                 (1) 

 
Correspondingly, the strain and stress vectors are defined as  
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T[ ]xx yy zz xy yx zx c zy cl l      ε                      (2) 
 

T[ ]xx yy zz xy yx zx zy ccm l m l    σ                   (3) 
 

where zyzx  , are introduced as micro-curvatures in Cosserat theory, zyzx mm ,  are the 
couple stresses conjugate to the curvatures zyzx  , , cl  is defined as the internal length 
scale. Fig. 1 gives stress and couple-stress in a two-dimensional Cosserat continuum.  
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Fig. 1 Stress and couple-stress in a two-dimensional Cosserat continuum 
 

The relation between strain components and displacement components and the 
equilibrium equations can be written in matrix – vector forms as              

 
Luε                                    (4) 

 
0fσLT                                  (5) 

 
in which the operator matrix 
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It is assumed that the strain vectorε is decomposed into both the elastic and the 
plastic parts, i.e. eε and pε , and the elastic strain vector eε  is linearly related to the 
stress vector,    

 
eeεDσ                                 (7) 

 
in which the elastic modulus matrix eD  for isotropic media can be given in the form 
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with the Lame constant   212  G , G  and   are the shear modulus and 
Poisson’s ratio in the classical sense, while cG  is introduced as the Cosserat shear 
modulus. 

 
2.2 3D Cosserat continuum 
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Fig. 2 Stress and couple stress in a 3D Cosserat continuum 
 

In three dimensional Cosserat continuum, there are six independent degrees of 
freedom at each material point, i.e. three conventional translational degrees-of-freedom 
 , ,x y zu u u  and three rotational degrees of freedom  , ,x y zω ω ω . The subscript of the 
translational degrees-of-freedom represents the direction of the displacement, and the 
subscript of the rotational degrees-of-freedom represents the axis around which the 
rotation revolves. The number of mechanical variables increases from 7 in two 
dimensions to 18 which includes nine conventional stresses and nine couple-stresses 
shown in Fig. 2. The stress vector and stress components are defined as  

 
   xx yy zz xy yx yz zy zx xz xx t yy t zz tσ σ σ σ σ σ σ σ σ m l m l m lσ =  

                   xy b xz b yx b yz b zx b zy bm l m l m l m l m l m l
T                   (9) 

 
where , ,xx yy zzm m m  are introduced as torsional couple stresses and 

, , , , ,xy xz yx yz zx zym m m m m m  are introduced as bending couple stresses in three dimensional 
Cosserat theory, tl  and bl  are defined as the internal length scales associated with 
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torsion and bending items respectively(Gauthier et al 1975; Eringen 1999). 
Correspondingly, there are 18 strain components in three dimensional Cosserat 
continuum. Each rotational degrees-of-freedom causes a torsional micro-curvature 

i
ij

j

ω
x
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(i=j) at its spin axis and the other two bending micro-curvature i
ij

j

ω
x
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another two axes. The strain vector and strain components can be expressed as 
 

 xx yy zz xy yx yz zy zx zx xx t yy t zz tl l l            
 

                       xy b xz b yx b yz b zx b zy bl l l l l l     
T

                       (10) 
 

in which , ,xx yy zz    are the torsional micro-curvatures, and , , , , ,xy xz yx yz zx zy       are the 
bending micro-curvatures. 

The relation between strain components and displacement components and the 
equilibrium equations can be written in matrix – vector forms as              

 

Luε  ;  x y z x y z= u u u ω ω ω
T

u                   (11) 
 

0fσLT                                (12) 
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Similar with two dimensional problem, the elastic strain vector eε  is linearly related 

to the stress vector,    
 

eeεDσ                                (14) 
 

in which the elastic modulus matrix eD  for isotropic media can be given in the form 
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where  ，G ，   and cG  are the same as those in two dimensions.  
 
3. Pressure dependent Cosserat elastoplastic model 
 

The Drucker-Prager yield criterion is particularly considered to describe the pressure 
dependent elastoplastic constitutive behavior of the geotechnical medium, and is written 
in the following form 

0 BAqF h                           (18) 

in which the effective deviatoric stress q  and the hydrostatic stress h  characterizing 
the second and the first stress invariants respectively can be expressed by 
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The material parameters and the plastic potential matrix for the case of the isotropic 
plasticity in the plane strain problem can be given as  
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for two dimensional problems concerned; while 
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for three dimensional problems concerned, where 1P , 2P  and 3P  can be expressed as  
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with the cohesion c and the internal frictional angle  . With the piecewise linear 
hardening/softening assumption for the cohesion, we have    

         p
c
pp hccc   0                          (24) 

where 0c  is the initial cohesion, c
ph  the hardening/softening parameter for cohesion, 

p  the equivalent plastic strain. It has been found that using the classical definition of 
equivalent plastic strain can not accurately capture different post yield paths in tension 
and compression simultaneously. An equivalent plastic strain measure capable of 
capturing the behavior of a material, which is characterized by two different strain 
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hardening/softening curves produced by loading in tension and then compression, is 
defined as (Li et al 1994; Duxbury and Li 1996) 
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where   is the plastic multiplier defined in non-associated flow rule   
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The plastic potential function is taken in the form  
 

                 BAqG h                             (27) 
 

with the material parameter                  
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  is the plastic potential angle (the angle of dilatance) defined by the deviatoric 
associativity rule. The material will be of associated plasticity as   . 

In the framework of Cosserat continuum theory, a consistent algorithm of the 
pressure-dependent elastoplastic model, i.e. the return mapping algorithm for the 
integration of the rate constitutive equation and the closed form of the consistent 
elastoplastic tangent modulus matrix, has been derived for two dimensional problems 
(Li and Tang 2005). For three dimensional problem, we also develop a similar 
pressure-dependent elastoplastic model based on the detailed study of the 
characteristics of the three dimensional Cosserat continuum. The capability and 
performance of the present models for two and three dimensional Cosserat continuum 
in simulating strain localization problems are testified in the following parts.  
 
4. The Finite Elements for Cosserat Continuum in two and three dimensions 
 

The finite element used in the present simulation, should possess, in addition to the 
usual requirements to element intrinsic properties, the capability to capture the 
pronounced localized failure mode and to simulate the reduction of the load-carrying 
capability due to strain softening. As the properties of volumetric locking for low-order 
elements still exist in Cosserat continuum despite the introduction of microrotation ω, 
the high-order elements with reduced integration, which possess better performance in 
this issue, are used in the present work. 

In this work, the eight nodded displacement-based quadrilateral isoparametric 
element interpolation approximation, as illustrated in Fig. 3(a), is simply employed for 
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the three degrees-of-freedom , ,x y zu u   in the 2D Cosserat continuum, and the twenty 
nodded displacement-based solid isoparametric element interpolation approximation, as 
can be seen in Fig. 3(b), is simply employed for the six degrees-of-freedom, including 
three-translational  , ,x y zu u u , and three-rotational degrees-of-freedom  , ,x y zω ω ω  in the 
3D Cosserat continuum. 
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(a)                      (b) 

Fig. 3 The finite elements used for Cosserat continuum: (a) eight nodded finite element 
for 2D problem; (b) twenty nodded solid finite element for 3D problem 

 
5. Numerical examples 
 

5.1 Analysis for the size effect of micro-structure 
Some experiments of micro-structures show that the mechanical strengths of the 

micro-structures depend on their size largely, i.e. size effects (Fleck et al 1994; Stolken 
and Evans 1998). To reflect the size effects of micro-structures, one of the effective 
methods is to use Cosserat continuum theory, in which the material parameters defined 
as internal length scale are included to describe the mechanical behavior of such 
micro-structures. Consider a micro-cantilever beam subjected to a 10MPa transverse 
shear traction at the free end of the beam. The geometry and boundary conditions of the 
beam, and relevant 20-nodes FE grid partition form are shown in Fig. 4, where l/h=8 and 
b/h=2. The Young’s modulus and the Poisson’s ratio of the material are 20 GPa and 0.3 
respectively. The Cosserat shear modulus is 5 GPa and 250 mb t cl l l    . 

τs=10MPa
z

x
y

ux=uy=uz=0
ωx=ωy=ωz=0 uy=0,ωx=0

l
b

h

 

Fig. 4 Geometry and boundary conditions for the micro-cantilever beam 
 
According to Timoshenko and Goodier (1970), the analytical solution for the 

deflection of the free end of the cantilever beam is 
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For several different sizes of the beam, i.e. several different value of / ch l , the analytical 
solution and the numerical solutions based on classical continuum theory (FEM) and 
Cosserat continuum theory (Cosserat-FEM) for the deflection of the free end of the 
cantilever beam are obtained. Table 1 gives the results as / ch l =1, 2, 4, 6, 10, 20 
respectively. 

It can be seen that the FEM solutions are much closed to analytical solutions since 
both of them are based on classical continuum theory, but based on Cosserat 
continuum theory, the Cosserat-FEM solutions are quite different. As the size of the 
micro-cantilever beam is closed to the internal scale cl , the Cosserat-FEM solutions are 
getting much smaller than the analytical solutions and FEM solutions; as the size of the 
micro-cantilever beam far outweighs the internal scale cl , the Cosserat-FEM solutions 
are getting closed to analytical solutions and FEM solutions. It reveals that the numerical 
solutions based on Coseerat continuum theory are effective in modeling size effect of 
micro-structures. 

Table 1  The values of deflection of the micro-cantilever beam in different cases 
h/lc

 Analytical solution (μm) FEM(μm) Cosserat FEM(μm) 

1 232.96 234.86 26.36 
2 465.92 469.72 153.24 
4 931.84 939.43 616.63 
6 1397.76 1409.14 1141.87 
10 2329.6 2348.57 2164.24 
20 4659.2 4697.14 4596.53 

 
 

5.2 Investigation of mesh-independent solutions 
As strain softening constitutive behavior is incorporated into a computational model in 

the frame of classical plastic continuum theories, the initial and boundary value problem 
of the model will become ill-posed, resulting in pathologically mesh-dependent solutions. 
To illustrate the capability of the Cosserat continuum finite element in overcoming 
mesh-dependent solutions, a shear structure in two and three dimensional space is 
considered respectively.  

 
5.2.1 Analysis of Two dimensional shear structure 
The shear structure with a height of 0.2m in y’ axis and an infinite length in the z’ axis 

is considered as a two dimensional plane strain problem. Two regular uniform meshes 
with different mesh densities, i.e. 120 , 140  element discretizations, are utilized as 
illustrated in Figures 5(a) and (b). All nodal displacements in the y’ axis are prevented. 
The bottom of the shear structure is fixed and a monotonously increasing displacement 
in the x’ axis enforced at the nodes on the upper boundary is prescribed. The material 
parameters used in this example are chosen as: 
E =1.0E+10Pa， =0.25， cG =2.0E+9Pa， 0c =1.0E+8Pa，

c
ph =-5.0E+8Pa, cl =0.006m. 

The rotational degrees of freedom at the nodes on the top and the bottom boundaries 
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are fixed to trigger the shear band in the shear structure.  

                  
                           (a)                          (b) 

Fig. 5 Deformed configuration of the shear structure subjected to a prescribed 
transverse displacement u=7.5mm in the x-axis at the top of the structure: (a) classical 

continuum; (b) Cosserat continuum 

Fig. 6 Curves of the transverse load applied to the top of the structure with increasing 
prescribed transverse displacement U of the top surface with different mesh densities. 

 
Figures 5 and 6 illustrate the deformed configurations and gradual reduction of the 

load-carrying capability for different mesh densities of shear structure due to strain 
softening with the development of plastic strains, where the shear structure is treated as 
the classical continuum and Cosserat continuum respectively. They illustrate that the 
load-displacement curves of the structure with different mesh densities converge to a 
physically realistic solution independent on the mesh density for Cosserat continuum, 
while pathologically mesh-dependent solutions for classical one. 

 
5.2.2 Analysis of three dimensional shear structure 
Consider the shear structure above with a finite length of 0.005m in the z axis as a 

three dimensional space problem. The geometry and boundary conditions and the 
material parameters used in this example are almost the same as those above. The 
internal length scales is chosen as 250 mb t cl l l    . Figures 7 and 8 illustrate the 
deformed configurations and the load-carrying capability for different mesh densities as 
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the shear structure is treated as the classical continuum and Cosserat continuum 
respectively. The similar results can be seen in this example, i.e. a physically realistic 
solution independent on the mesh density for Cosserat continuum, while pathologically 
mesh-dependent solutions for classical one. 

                                                     
                     (a)                                          (b) 

Fig. 7 Deformed configuration of the shear structure subjected to a prescribed 
transverse displacement u=7.5mm in the x-axis at the top of the structure: (a) classical 

continuum; (b) Cosserat continuum 
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Fig. 8 Curves of the transverse load applied to the top of the structure with increasing 
prescribed transverse displacement U of the top surface with different mesh densities. 

 
5.3 Investigate the well-posedness of the boundary value problem with strain 

softening behavior 
 
5.3.1 Investigate the stability of a vertical cut in two dimensions 
Investigate the stability of a vertical cut in two dimensional soil with strain softening 

material. In this investigation, a finite element mesh is created in a 13.2×6.8m 
rectangular block of soil. The material parameters of the soil are chosen as 
E =5.0E+4kPa,  =0.3, cG =1.0E+4kPa, 0c =30kPa, c

ph =-30kPa,  =2.0E3kg/m3. 
Before the excavation, the initial stress state within the soil has been reproduced by 
progressively increasing the gravity acceleration up to the value of 9.81 2m/s , assuming 
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that the soil exhibit elastic perfectly plastic behavior with the Drucker-Prager yielding 
criterion. At the end of gravity loading, the displacements and strains are reset to zero. 
The excavation process is simulated by removing 8 elements at the same level in one 
increment from the upper left corner of the initial finite element mesh. Mana’s method is 
used to calculate the excavation loading (Mana and Clough 1981).  

At first, the computational model in the frame of classical continuum theory is used to 
analyze the excavation process. Fig. 9(a) shows the effective plastic strain distribution 
after the removal of 10th layer, and it can be seen that the failure zone does not run 
through and the whole failure has not been achieved. As the excavation process 
continues, the classical finite element numerical solution faces significant difficulties that 
the numerical calculation can not be carried out any more due to the increasing number 
of negative eigenvalues in the system stiffness matrix.  

Then, the computational model in the frame of Cosserat continuum theory is used to 
analyze the excavation process. Fig. 9(b) shows the effective plastic strain distribution 
after the removal of 10th layer, which is almost the same as Fig. 9(a). As the excavation 
process continues and the elements of 11th layer are removed, the numerical 
calculation continues also. Fig. 9(c) shows that the maximum value and the distribution 
area of the effective plastic strain increase largely after the removal of 11th layer. It can 
be seen that a whole trans-failure zone has formed. Therefore, the numerical results in 
the present study indicate the inability of classical continuum model in simulating the 
whole failure progress, while the capability and performance of Cosserat continuum 
model in keeping the well-posedness of the boundary value problems with strain 
softening behavior incorporated and in completing simulation of the whole failure 
progress. 

 
(a) 

  
(b) 

 
(c) 

Fig. 9 Effective plastic strain distribution in the vertical cut: (a) after the removal of 10th 
layer with classical continuum; (b) after the removal of 10th layer with Cosserat 

continuum; (c) after the removal of 11th layer with Cosserat continuum. 
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5.3.2 Investigate the stability of a vertical cut in three dimensions 

12m

5m 5m

x

ux=0

y

Excavation 
area

20m

20m20m

ux=uy=uz=0

uy=0

z

 

Fig. 10 The geometry and boundary conditions of the model. 
 

Investigate the stability of a vertical cut in three dimensional soil with strain softening 
material. The dimensions of the soil space are considered as 40m×40m×40m, in which 
the cut area in horizontal plane is 10m×10m. Owing to symmetry condition, the 
calculation is carried out only for a quarter of the soil space, which is discretized by 
regular n n n   meshes. The displacements in x’, y’ and z’ axes of the nodes on the 
bottom boundary are specified as null. The finite element nodes on the left side 
boundary are fixed in y’ axis and free in x’ and z’ axes respectively, while the finite 
element nodes on the back side boundary are fixed in x’ axis and free in y’ and z’ axes 
respectively. The material parameters of the soil are chosen as: 0.05mb t cl l l   , the 
other parameters are the same as that of two dimensions. The analysis process is also 
analogous to that in two dimensions. The excavation process is simulated by removing 
5 5  elements at the same level in one increment from the upper center of the initial 
finite element mesh. 

At first, the classical plastic continuum theory is used to analysis the excavation 
process. Fig. 11(a) shows the effective plastic strain distribution after the removal of 7th 
layer, and it can be seen that the failure zone does not run through and the whole failure 
has not been achieved. As the excavation process continues, the classical finite 
element numerical solution faces significant difficulties that the numerical calculation 
can not be carried out any more due to the increasing number of negative eigenvalues 
in the system stiffness matrix.  

Then, Cosserat plastic continuum theory is used to analysis the excavation process. 
Fig. 11(b) shows the effective plastic strain distribution after the removal of 7th layer, 
which is extended up to the surface of the soil. As the excavation process continues and 
the elements of 8th layer are removed, the numerical calculation continues also. Fig. 
11(c) shows that the maximum value and the distribution area of the effective plastic 
strain increase largely after the removal of 8th layer. It can be seen that a whole 
trans-failure zone has been completed. Therefore, the numerical results in the three 
dimensional study indicate the inability of classical continuum model in simulating the 
whole failure progress, while the capability and performance of Cosserat continuum 
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model in keeping the well-posedness of the boundary value problems with strain 
softening behavior incorporated and in completing simulation of the whole failure 
progress. It should be pointed out that the excavation depth in three dimensional soil is 
greater than that in two dimensional soil due to the three dimensional space effects. Fig. 
12 displays the distributions of the micro-rotation in this condition, which illustrates 
obvious rotation in the failure area, so the micro-rotation is also an important indication 
that phenomena of strain localization occur. 

    
                 (a)                   (b)                   (c) 

Fig. 11 Effective plastic strain distribution in the vertical excavation: (a) after the removal 
of 7th layer with classical continuum; (b) after the removal of 7th layer with Cosserat 

continuum; (c) after the removal of 8th layer with Cosserat continuum. 

 

Fig. 12 Rotational quantity distributions in the vertical cut after the removal of 8th layer 
with Cosserat continuum 

 
5.4 Investigate the well-posedness of the boundary value problem with 

non-associated elastoplastic behavior 
As non-associated plastic behavior incorporated, the material may exhibit an 

equivalent strain softening behavior in some circumstances (Pande et al. 1986). A 
gravity retaining wall in passive condition is considered. As show in Fig. 13, the height of 
the wall is m)2.3(H  and the soil behind the wall has a unit density of  =2.0E3kg/m3. 
The material parameters of the soil are chosen as: E =5.0E+4kPa，  =0.35， 

cG =1.0E+4kPa， m12.0c l . The other material parameters of the soil are chosen for 
three different cases as:① 0c =50kPa， 35 ， 0 ; ② 0c =50kPa， 40 ， 0 ; 
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③ 0c =40kPa， 35 ， 0 . It is assumed that the friction between the wall and soil is 
zero. A 13.2×6.8m rectangular block of soil is selected to create the finite element mesh, 
in which the right border and left border under the wall and bottom are fixed. Fig. 14 
gives the curves of force (acting on the wall) -displacement (of the wall) for these cases 
when classical continuum theory and Cosserat continuum theory are considered 
separately.   

For case 1, the results based on classical continuum theory shows that the 
force-displacement curve stops at a relatively early stage due to the difference between 
friction angle and dilation angle. But for Cossserat continuum theory, the 
force-displacement curve exhibits an equivalent strain softening behavior and that the 
displacement can extend to 0.2m. The limit loads for these two theories are almost the 
same.   

For case 2, a larger difference between friction angle and dilation angle is adopted to 
increase difficulties in numerical calculation. In this case, more serious difficulties are 
encountered for classical continuum theory and the finite element numerical calculation 
can not be carried out, so there are no records in Fig. 14. But it is not the case for 
Cosserat continuum theory, according to which the numerical difficulties are overcome 
and the force-displacement curve and an equivalent strain softening behavior are 
obtained.   

For case 3, the difference between friction angle and dilation angle is the same as 
case 1, but the cohesion is decreased from 50kPa to 40kPa. In this case, the results 
analogous with that of case 2 are obtained. 

Fig. 15 give deformation configuration and effective plastic strain distribution for 
classical continuum( 35 , 0 ), which show the local sharply outstanding deformation 
and the intense narrow band distribution of effective plastic strain due to local 
constitutive model used. Fig. 16 give deformation configuration and effective plastic 
strain distribution for Cosserat continuum( 35 , 0 ), which show the local relaxing 
deformation and certain wide band distribution of effective plastic strain due to non-local 
constitutive model with an internal length scale used.  

Numerical results indicate the inability of classical continuum model, while the 
capability and performance of Cosserat continuum model in keeping the well-posedness 
of the boundary value problems with non-associated perfect elastoplastic behavior 
incorporated. 

 

Fig. 13 Passive earth pressure on retaining wall: boundary conditions and finite element 
mesh. 
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Fig. 14 Force-displacement curves of retaining wall for different cases. 

    
(a)                        (b) 

Fig. 15 Classical continuum (
35 ,

0 ): (a)deformation configuration; (b) Effective 
plastic strain distribution. 

    
(a)                       (b) 

Fig. 16 Cosserat continuum(
35 ,

0 ): (a) deformation configuration; (b) effective 
plastic strain distribution. 

 
 
6. Conclusions 
 

Based on the analysis for the characteristics of 2D and 3D Cosserat continuum, this 
paper presents the elastoplastic Cosserat continuum models and corresponding finite 
element numerical methods for both 2D and 3D pressure-dependent materials. With 
these models and finite element methods, the size effects of a cantilever beam, the 
mesh-independent solution of a shear structure, the strain localization failure due to 
strain softening in excavation and the strain localization failure due to material dilatancy 
in retaining structure are studied. Numerical results illustrate that as compared with the 
performance of the finite element procedure based on the classical continuum model, 
the present finite element methods based on the proposed Cosserat continuum model 
are capable of reflecting the size effects, ensuring mesh- independent solution, 
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preserving the well-posedness of the boundary value problem characterized by the 
strain localization due to strain softening and material dilatancy and simulating the entire 
progressive failure process occurring in engineering structures. 
 
 
Acknowledgements 
 

The authors are pleased to acknowledge the support of this work by the National 
Natural Science Foundation of China through contract/grant numbers 50808033, the 
National Key Basic Research and Development Program (973 Program) through 
contract number 2010CB731502 and the Fundamental Research Funds for the Central 
Universities (DUT11LK37, DUT11ZD110). 
 
 
References 
 

Troncone, A. (2005), “Numerical analysis of a landslide in soils with strain-softening 
behaviour,” Geotechnique, 55(8), 585-596. 

Pande, G.N., Pietruszczak, S. (1986), “Symmetric tangent stiffness formulation for 
non-associated plasticity,” Computers and Geotechnics, 2(2), 89-99. 

Li, X.K., Zhang, J.B. and Zhang, H.W. (2002), “Instability of wave propagation in 
saturated poroelastoplastic media,” Int. J. Numer. Anal. Meth. Geomech.,, 26(6), 
563-578. 

Muhlhaus, H.B. and Vardoulakis, I. (1987), “The thickness of shear bands in granular 
materials,” Geotechnique, 37(3), 271-283. 

Muhlhaus, H.B. (1989). “Application of Cosserat theory in numerical solutions of limit 
load problems,” Ing. Arch., 59(2), 124-137.  

de Borst, R. and Sluys L.J. (1991), “Localization in a Cosserat continuum under static 
and dynamic loading conditions,” Comput. Methods Appl. Mech. Engrg., 90(1), 
805-827. 

de Borst, R. (1991), “Simulation of strain localization: a reappraisal of the Cosserat 
continuum,” Eng. Comput., 8(4), 317-332. 

de Borst, R. (1993), “A generalization of J2-flow theory for polar continua,” Comp. Meth. 
Appl. Mech. Eng., 103(3), 347-362. 

Tejchman, J. and Wu, W. (1993), “Numerical study on patterning of shear bands in a 
Cosserat continuum,” Acta Mech., 99(1-4), 61-74. 

Tejchman, J. and Bauer, E. (1996), “Numerical simulation of shear band formation with 
a polar hypoplastic constitutive model,” Computers and Geotechnics, 19(3), 221-244. 

Steinmann, P. (1994), “A micropolar theory of finite deformation and finite rotation 
multiplicative elastoplasticity,” Int. J. Solids Struct., 31(8), 1063-1084. 

Steinmann, P. (1999), “Formulation and computation of geometrically nonlinear gradient 
damage,” Int. J. Numer. Meth. Eng., 46(5), 757-779. 

Iordache, M.M. and Willam, K. (1998), “Localized failure analysis in elastoplastic 
Cosserat continua,” Comput. Methods Appl. Mech. Eng., 151(3), 559–586. 

Manzari MT.(2004), “Application of micropolar plasticity to post failure analysis in 
geomechanics,” Int. J. Numer. Anal. Meth. Geomech., 28(10), 1011-1032. 

2041



Li, X.K. and Tang, H.X. (2005), “A consistent return mapping algorithm for 
pressure-dependent elastoplastic Cosserat continua and modeling of strain 
localization,” Comput. Struct., 83(1): 1-10. 

Khoei, A.R., Gharehbaghi, S.A. and Tabarraie, A.R. (2007), “Error estimation, adaptivity 
and data transfer in enriched plasticity continua to analysis of shear band 
localization,” Appl. Math. Model, 31(6), 983-1000. 

Ehlers, W. and Volk, W. (1998), “On theoretical and numerical methods in the theory of 
porous media based on polar and non-polar elasto-plastic solid materials,” Int. J. 
Solids Struct., 35(34), 4597–4617. 

Rubin, M.B. (2005), “Numerical solution of axisymmetric nonlinear elastic problems 
including shells using the theory of a Cosserat point,” Comp. Mech., 36(4), 266–288. 

Liu, D., Cao, D.Q., Rosing, R. et al. (2007), “Finite element formulation of slender 
structures with shear deformation based on the Cosserat theory,” Int. J. Solids 
Struct., 44(24), 7785–7802. 

Riahi, A. and Curran, J.H. (2009), “Full 3D finite element Cosserat formulation with 
application in layered structures,” Appl. Math. Model, 33(8), 3450-3464. 

Riahi, A., Curran, J.H. and Bidhendi, H. (2009) “Buckling analysis of 3D layered 
structures using a Cosserat continuum approach,” Comput. Geotech., 36(7), 
1101-1112. 

Khoei, A.R., Yadegari, S. and Biabanaki, S.O.R. (2010), “3D finite element modeling of 
shear band localization via the micro-polar Cosserat continuum theory,” Comput  
Mater. Sci., 49(4), 720-733. 

Gauthier, R.D. and Jahsman, W.E. (1975), “A quest for micropolar elastic constants,” J. 
Appl. Mech., 42(2), 369-374. 

Eringen, A.C. (1999), Microcontinuum field theories, I: Foundations and 
Solids ,Springer, New York. 

Li, X.K., Duxbury, P.G. and Lyons, P. (1994), “Considerations for the application and 
numerical implementation of strain hardening with the Hoffman yield criterion,” 
Comput. Struct., 52(4), 633–644. 

Duxbury, P.G. and Li, X.K. (1996), “Development of elasto-plastic material models in a 
natural co-ordinate system,” Compt. Methods Appl. Mech. Eng., 135(4), 283–306. 

Fleck NA, Muller GM, Ashby MF, etc.. (1994), “Strain gradient plasticity: theory and 
experiment,” Acta Metall. Mater., 42(2), 475-487. 

Stolken J.S. and Evans A.G. (1998), “A micro-bend test method for measuring the 
plasticity length scale,” Acta Mater., 46(14), 5109-5115. 

Timoshenko, S.P. and Goodier, J.N. (1970) Theory of elasticity, (third edtion),  
McGraw-Hill, New York. 

Mana, A.I. and Clough, G.W. (1981), “Prediction of movements for braced cuts in clay”, 
Journal of Geotechnical Engineering Division, 107(6), 759-778. 

 

2042

http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DEhlers,%2520W.%26authorID%3D7006482597%26md5%3D99bf7765d1b4c4524bd8dffba681a555&_acct=C000012078&_version=1&_userid=145269&md5=977b486537f7392ba20042fbbee98561
http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=27983&_origin=article&_zone=art_page&_linkType=scopusAuthorDocuments&_targetURL=http%3A%2F%2Fwww.scopus.com%2Fscopus%2Finward%2Fauthor.url%3FpartnerID%3D10%26rel%3D3.0.0%26sortField%3Dcited%26sortOrder%3Dasc%26author%3DVolk,%2520W.%26authorID%3D7005571313%26md5%3D74003a968f14a0367e0e264ce90bae9e&_acct=C000012078&_version=1&_userid=145269&md5=340ff445dc336ae728bf5e9cb7d4c862
http://www.sciencedirect.com/science/journal/00207683/35/34



