
  

Effect of plastic anisotropy on the limit load of highly under-matched 
joints: A conceptual approach to plane strain problems  

 
*Sergei Alexandrov1), Yusof Mustafa2) and Mohd Zamani Ahmad3) 

 
1) A.Ishlinskii Institute for Problems in Mechanics, RAS, Moscow 119526, Russia 

2) Faculty of Mechanical Engineering, UTM, Johor Bahru 81310, Malaysia 
1) sergei_alexandrov@spartak.ru 

 
ABSTRACT 

 
     The present paper is concerned with a general approach to determine semi-
analytical limit loads for a class of highly under-matched plastically anisotropic welded 
joints. The definition for highly under-matched welded joints is that the weld is much 
softer than the base material. Therefore, plastic deformation is confined within the weld 
whereas the base material is rigid. The approach proposed is based on two principles. 
First, the general kinematically admissible velocity proposed accounts for singular 
behavior of real velocity fields near bi-material interfaces. Second, the thickness of the 
weld is usually much smaller than other geometric dimensions of specimens. 
Therefore, a linear through-thickness distribution on the velocity component normal to 
the weld is assumed. …… 
 
 
1. INTRODUCTION 
 
     The limit load is an essential input parameter in many flaw assessment procedures 
(Zerbst et al., 2000). A comprehensive overview of limit load solutions for structures 
with defects available at the time of writing can be found in Miller (1988). An overview 
of limit load solutions for highly under-matched welded joints including joints containing 
cracks has been given in Alexandrov (2012). A distinguished feature of this class of 
welded joints is that the weld is much softer than the base material. In particular, plastic 
deformation is solely confined within the weld whereas the base material is rigid. Such 
structures are of practical interest (Hao et al., 1997). The present paper concerns with a 
general method to build up kinematically admissible velocity fields for a class of highly 
under-matched plastically anisotropic welded joints. It is worthy of note that elastic 
properties have no effect on the limit load (Drucker et al., 1952). The approach 
proposed is based on two principles. First, it is known that the real velocity field is 
singular in the vicinity of envelopes of characteristics (Alexandrov and Richmond, 2001, 
Alexandrov and Jeng, in press). In particular, the equivalent strain rate involved in the 
formulation of the upper bound theorem of plasticity (Hill, 1950) follows an inverse 
square root rule near such surfaces and, therefore, approaches infinity. In the case of 
highly under-matched welded joints envelopes of characteristics coincide with the bi-
material interface. It is advantageous to account for the singular behaviour of the real 
velocity fields in kinematically admissible velocity fields. Second, the thickness of the 
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weld is usually much smaller than other geometric dimensions of specimens. It is 
therefore natural to assume a linear through-thickness distribution on the velocity 
component normal to the weld. The first principle has been adopted in Alexandrov and 
Richmond (2000) to propose a general method to evaluate the tensile strength of 
adhesive plastic layers of arbitrary simply connected contour. The method has been 
applied to estimate the effect of three-dimensional deformation on the limit load for a 
highly under-matched welded joint of rectangular cross-section in Alexandrov (1999). 
The second principle has been ignored in Alexandrov and Richmond (2000). On the 
other hand, the exact analytic solution for compression of a thin rigid/plastic layer 
between two rough parallel plates predicts a linear through-thickness distribution of the 
velocity component normal to the layer (Hill, 1950). A similar distribution of this velocity 
component appears in compression of an anisotropic layer (Collins and Meguid, 1977). 
It is therefore reasonable to account for such solution behavior in kinematically 
admissible velocity fields under consideration. 
 
 
2. CONCEPTUAL APPROACH 
 
     The class of structures under consideration is restricted to highly under-matched 
welded joints under plane strain conditions. The definition for highly under-matched 
welded joints assumes that plastic deformation at the instant of plastic collapse is 
localized within the weld whereas the base material is rigid. A consequence of such a 
flow pattern is that the yield stress of the base material has no effect of the limit load. 
Therefore, the mis-match factor, which is considered to be an important parameter of 
welded joints, is not involved in the present formulation. Numerous limit load solutions 
for highly under-matched joints show that the velocity vector is discontinuous across a 
significant portion of the bi-material interface (Alexandrov, 2012). In most cases, these 
velocity discontinuity surfaces are envelopes of characteristics. It is known (Alexandrov 
and Jeng, in press) that the real velocity field is singular in the vicinity of envelopes of 
characteristics in plane strain flow of anisotropic materials. The present study is 
restricted to plane strain problems for orthotropic materials obeying the quadratic yield 
criterion proposed in Hill (1950). It is advantageous to take into account the singular 
behavior of the real velocity field found in Alexandrov and Jeng (in press) in 
kinematically admissible velocity fields. Introduce a local Cartesian coordinate system 
 , , z   whose z – axis is orthogonal to the plane of flow and   - axis is orthogonal to 

the bi-material interface. The non-zero strain rate components in this coordinate system 
are denoted by  ,   and  . It has been shown in Alexandrov and Jeng (in press) 

that the shear strain rate in this coordinate system follows an inverse square root rule in 
the form  

                                          
1E

o
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 
                                          (1) 

 
as 0  . It is evident that   is the normal distance to the bi-material interface. In what 
follows this distance will be denoted by s. In Eq. (1), E is independent of  . In the case 
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of the quadratic yield criterion proposed in Hill (1950), the plastic work rate is given by 
 

                                           2 22 1W T c                                    (2) 

 
It has been taken into account here that      due to plastic incompressibility. In 

Eq. (2) 
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Here X, Y, and Z are the tensile yield stresses in the   - ,   - and thickness directions, 
respectively. Also, T is the shear yield stress in the  -plane. The upper bound 
theorem reads 
 
                                            

v d

i i s

S S

t v dS Wd u dS


                                 (4) 

 
where   is the volume of material loaded by prescribed velocities iv  over a part vS  of 

its surface,  u  is the amount of velocity jump across the velocity discontinuity surface 

dS  and s  is the magnitude of the shear stress component referred to the slip-lines. It is 

known that (Hill, 1950)  
 

                                                21 sin 2s T c                                           (5) 

 
where  is the anti　 -clockwise orientation of the slip-line to the   - axis. The plastic 

work rate and  u  involved in Eq. (4) should be found using any kinematically 

admissible velocity field iu . Since the normal velocity must be continuous across any 

velocity discontinuity surface, the velocity component u  is tangent to this surface. 

Equation (4) enables the stresses it  applied over vS  to be evaluated. If the only 

unknown load is a tensile force F then Eq. (4) can be transformed to 
 
                                                   
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where uF  is the upper bound on the magnitude of F at plastic collapse and V is the 

velocity of the point at which the force is applied. It has been assumed here that the 
vectors F and V are collinear. It follows from Eqs. (1) and (2) that the volume integrals 
in Eqs (4) and (6) are improper. However, it is easy to show convergence.  
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     The weld is idealised by a narrow layer of constant thickness. A typical weld 
configuration is shown in Fig. 1. The thickness of the weld is 2H and its width is 2L. 
There are two axes of symmetry coinciding with the axes of Cartesian coordinates (x, 
y). For a sake of simplicity, it is assumed that the boundary value problem is symmetric 
relative to these axes. It is therefore sufficient to get the solution in the domain 0x   
and 0y  . There should a rigid zone in the vicinity of the x-axis. This zone sticks to the 
base material whose motion is prescribed. Therefore, the motion of the rigid zone is 
prescribed as well. There are two velocity discontinuity curves, 0b and bc (Fig. 2). The 
shape of the velocity discontinuity curve 0b should be found from the solution.  

 
 

 

Fig. 1 Idealised weld configuration 
 

 

Fig. 2 Flow pattern 
 
 
 
     Let xu  and yu  be the velocity components in the Cartesian coordinate system. 

Because of symmetry, one of the velocity boundary conditions is 
 
                     0xu                                                             (7) 
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at 0x  . In the case under consideration s H x  . Therefore, it follows from Eq. (1) 
that 
 

                                   1
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where 0U  and 1U  may depend on y. By assumption, xu  is a linear function of x. Taking 

into account Eq. (7) it is possible to get 
 

                                x
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.                                              (9) 

 
where  y H  is an arbitrary function of its argument. Using Eqs. (8) and (9) it is 

possible to find the shape of 0b and the magnitude of  u  across the velocity 

discontinuity curves. Then, Eq. (5) can be used to determine s . Substituting this value 

of s  along with Eqs.(8) and (9) into Eq. (6) gives an upper bound on F. The 

parameters involved in Eq. (8) should be found by minimizing the right hand side of Eq. 
(6). 
 
 
3. CONCLUSIONS 
 
     A general method to build up kinematically admissible velocity fields satisfying Eq. 
(1) has been proposed. The method is a generalization of the method for isotropic 
materials (Alexandrov, 2012). Since the latter has been successfully used for a great 
number of configurations, it is expected that the new method will result in accurate limit 
load solutions for anisotropic materials. … 
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