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ABSTRACT 
 

     Operational modal analysis offers an economical way for identifying the modal 
properties (natural frequency, damping, mode shape) using output-only vibration data 
collected under working condition of the structure without artificial loading. As the modal 
properties are identified without using explicit information of the loading, they often 
have significantly higher uncertainty than those identified in free or forced vibration 
tests. It is of both scientific and engineering significance to understand the fundamental 
scaling law of their uncertainty, which governs the achievable limits of operational 
modal analysis. For example, how much data is needed for identifying the damping 
ratio to within 30% coefficient of variation? In a Bayesian probability context, this paper 
gives a fundamental answer for small damping, sufficient data duration and well-
separated modes. 
 
1. INTRODUCTION 
 
     Ambient vibration (output-only) tests have gained increasing popularity in both 
theory development and practical applications (Brincker 2001; Brownjohn 2003; Au 
2011a). This is to a large extent attributed to its economy in implementation. Ambient 
vibration data are obtained when the structure is under unknown working load assumed 
to be random with broadband spectral characteristics. Ambient modal identification, 
often called „operational modal analysis‟, allows the extraction of modal properties 
under such context. In the absence of specific loading information, the uncertainty of 
the identified modal parameters is often significantly larger than that using forced 
vibration (known input) or free vibration tests where the signal-to-noise (s/n) ratio can 
be managed to an adequate level. 
 
     One question that arises frequently in performing ambient vibration tests is: 
 

How much data do we need? 
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     The answer to question is by no means simple. In this paper we provide a 
fundamental answer to this question for well-separated modes under some asymptotic 
conditions, namely, small damping, high modal signal-to-noise ratio and sufficiently 
long data. These conditions are typically met in field testing applications of civil 
engineering structures and so the results can provide useful guidelines for performing 
ambient vibration tests in practice. In what follows, we shall first reason logically the 
context where the question and answer should be placed. We shall then outline the 
answer, referred as „uncertainty laws‟. Practical implications shall also be provided.  
 
2. BAYESIAN IDENTIFICATION FRAMEWORK 
 
     Suppose we have a digital record of acceleration time history data 

},...,1:ˆ{ NjRn

j x  at n  measured degrees of freedom (dofs) of a structure under 
„ambient condition‟. From this data set we would like to identify the modal properties of 
a given mode of interest. The modal properties include primarily the natural frequency 
f , damping ratio   and (incomplete or partial) mode shape Φ  (an n -by-1 real vector). 

It is assumed that the structure is classically damped and the mode of interest is „well-
separated‟ from other modes, in the sense that it dominates the frequency response 
(e.g., in terms of power spectral density, PSD) in its resonance band (see more later). It 
is also assumed that the data is of „good quality‟, in the sense that the contribution of 
modal response is large compared to the channel noise level in the resonance 
frequency band of the mode. „Ambient condition‟ or „broadband excitation‟ here refers 
specifically to the modal excitation having a constant PSD in the resonance frequency 
band. The modal excitation only need to be „locally white‟ within the resonance band, 
rather than the whole sampled frequency band. The ambient assumption here is much 
easier to justify that one might typically perceive. 
 
     In the presence of uncertainties or lack of information associated with the 
measurement (channel noise, finite data length) and modeling assumptions (e.g., 
classical damping, ambient excitation) one cannot expect to determine the modal 
properties exactly even in the presence of the data. The remaining uncertainty 
associated with the modal parameters given the data can be quantified fundamentally 
in a Bayesian identification perspective (Jaynes 2003; Beck 2012). 
 
     Let the modal parameters be collected in a vector θ  and let the measured data be 
denoted by D . In the presence of data all information about θ  is encapsulated in the 
„posterior distribution‟ )|( Dp θ . According to Bayes‟ Theorem, it is given by 
 
 1)()()|()|(  DppDpDp θθθ  (1) 
 
The RHS in (1) should be viewed as a probability distribution of θ  and so only its 
variation with respect to θ  matters. The last term on the RHS does not depend on θ  
and so it is irrelevant to the knowledge of θ . The term )(θp  is the prior distribution we 
mentioned before. The term )|( θDp  is called the „likelihood function‟, which is the most 
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important term because it dictates the mechanism by which the information in D  can 
be utilized to infer θ . It can be (and must be) derived based on the identification model 
that relates θ  and D , which corresponds to a „forward‟ (rather than „inverse‟) problem.  
      
Assume that the data is sufficient to narrow down the posterior distribution to having 
only a single peak, which is often valid in modal identification. In this case the 
uncertainty of each parameter in θ  can be conveniently characterized by the most 
probable value (MPV), which is where the posterior distribution is peaked; and a 
posterior standard deviation, which is related to the spread of the posterior distribution 
about its peak. For convenience an equivalent dimensionless measure called the 
posterior coefficient of variation (c.o.v.) is used, which is defined as the ratio of the 
posterior standard deviation to the MPV. Clearly, the posterior MPV and c.o.v. depend 
on the measured data. They can be obtained from the posterior distribution for given 
data. The process is primarily a computational problem which has been solved 
efficiently, typically in a matter of seconds (Au et al. 2013).  
 
3. ASYMPTOTIC UNCERTAINTY LAWS 
 
     The foregoing discussion shows that the remaining uncertainty of the modal 
parameters can be quantified in terms of their posterior c.o.v.. This, however, does not 
provide much insight about how the posterior c.o.v. depends on various test 
configurations because it can only be calculated „point-wise‟ for a given set of data. The 
exact dependence of the posterior c.o.v. on test configurations and the measured data 
is expected to be extremely complicated and is unlikely to be described in a close-form 
explicit expression. However, a recent study (Au 2013a,b) shows that it is possible to 
obtain close-form expressions for the leading order term of the posterior c.o.v. for well-
separated modes and under some asymptotic conditions, namely, small damping, high 
modal s/n ratio and sufficiently long data duration. The latter conditions are often 
encountered in ambient vibration tests of civil engineering structures and so the results 
can provide useful guidelines in practice. The results are referred as „uncertainty laws‟. 
The derivation is quite lengthy (omitted here) but the results are remarkably simple. The 
full set of uncertainty laws also includes results on the mode shape, excitation intensity 
and channel noise but for practical purposes they are omitted in this paper. See Au 
(2013a, b) for a full story.  
 
     Let f  and   denote respectively the posterior c.o.v. of the natural frequency and 
damping ratio. For a well-separated classically damped mode, small damping, high 
modal s/n ratio and sufficiently long data duration, it can be shown rigorously that („~‟ 
reads „asymptotic to‟ or „to the leading order‟) 
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where f  and   are respectively the natural frequency and damping ratio of the mode 
of interest; 
 
 fTN dc   (4) 
 
is a normalized data length equal to the duration of data dT  divided by the natural 
period ( 1f ); and 
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are „data length factors‟ that are monotonic increasing function of the „bandwidth factor‟ 
 . The latter reflects the amount of information that can be utilized in the data for 
identifying the mode of interest without incurring significant modeling error. More 
specifically, the uncertainty laws have been derived assuming that the mode is 
identified using information of the FFT of ambient vibration data within a frequency 
band of )1( f .  
 
4. PRACTICAL IMPLICATIONS 
 
     The uncertainty laws capture fundamentally the effect of test configurations and they 
have important implications on performing ambient vibration tests. First, 2

f  in Eq. (2) is 
proportional to  , while on the contrary 2

  in Eq. (3) is inversely proportional to  . 

Ignoring the data length factors, 1/ 222   f . For small   encountered in 
applications, say, 0.5%~5%, this means that the damping ratio has much larger 
posterior uncertainty than the natural frequency or mode shape, and so it is likely to 
govern the required data length. This is consistent with common findings (Tamura et al. 
1996; Au et al. 2012). The dependence of the uncertainty laws on   can be explained 
intuitively but it is omitted here; see Au (2013b). 
 
     Governed by the uncertainty of the damping ratio, the required data length as a 
multiple of the natural period to achieve a given posterior c.o.v.   is given by, using 
Eq. (3),  
 
 12 ])(2[   BNc  (7) 
 
To give a rule-of-thumb, consider a damping ratio of 1% and a bandwidth factor of 

6 , which gives %60~)6(B . The required data length is then 2/5.27 cN , say, 
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 2
30


cN   ( 6%,1   ) (8) 

 
This means that 300 natural periods are required to achieve a moderate posterior c.o.v. 
of %30 ; 750 periods for %20 ; and 3,000 periods for %10 . The 
corresponding c.o.v.s of the natural frequency are 0.67%, 0.27% and 0.067%, which 
are negligible. Smaller damping or bandwidth requires longer data length. 
 
     The value suggested in Eq. (8) is the minimum data length based on accuracy 
requirement and assuming good modal s/n ratio. In practice it will need to be traded off 
with other practical constraints. When little is known about the existence of a mode in a 
frequency band one may increase (e.g., double) the data duration to get a clearer 
picture of the spectrum for deciding the number of modes. On the other hand, there are 
situations that limit the data duration and hence the identification accuracy. Super-tall 
buildings (height >300m), for example, have a natural period in excess of 5 seconds. 
Assuming 1% damping, it requires over 4 hours to achieve a posterior c.o.v. of 

%10 . This duration is too long that significantly weakens the stationarity 
assumption in the stochastic load and the time invariance assumption of modal 
properties, giving rise to modeling errors that may invalidate the formulation. Wind 
loads during typhoons can change by orders of magnitude in a matter of an hour. The 
damping ratio can change significantly over such period as a result of amplitude 
dependence.  In view of this, for super-tall buildings a c.o.v. of %30  would be a 
reasonable accuracy to aim at, requiring about half an hour data. This may put a limit 
on the precision of field evidence for wind effects on long-period structures. 
 
5. CONCLUSIONS 
 
     Uncertainty laws Eq. (2) and Eq. (3) have been presented for the natural frequency 
and damping ratio, respectively. They govern the achievable limits of accuracy in the 
natural frequency and damping ratio identified using ambient vibration data. They are 
derived fundamentally based on a Bayesian identification framework under asymptotic 
conditions of small damping and long data duration. Our discussion reveals clearly that 
the identification precision is primarily related to the spectral information in the data in 
the resonance band of the mode of interest. Information or complexities in other bands 
are irrelevant. As the Bayesian approach processes fundamentally the usable 
information in the data for given modeling assumptions, the uncertainty laws represent 
the lower limit of uncertainty that can be achieved by any method, including Bayesian 
and non-Bayesian methods. In the latter, uncertainty is interpreted as the ensemble 
variability of the estimates in a frequentist sense when there is no modeling error (Au 
2012a). 
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