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ABSTRACT 
 
In the current paper, a non-convex constitutive relation based on phenomenological 
phase transition theory is employed to construct a differential model for the MR fluid 
flow in valve mode. The dynamical velocity distributions of the MR flow are simulated 
for two different sinusoidal loading conditions based on the proposed differential model. 
The plug flow predicted both by Bingham plastic model and Herschel-Bulkley model are 
well captured by the proposed model. It is shown that the proposed differential model 
can well predict the dynamical behaviors of MR fluids in the valve mode, including the 
transient behaviors for the plug flow boundaries when the pressure gradient is reversed. 
 
 
1. INTRODUCTION 
 
Magnetorheological (MR) fluids are mainly dispersions of particles made of soft 
magnetic materials in carrier oil. The unique characteristics of MR fluids are derived 
from the ability to switch reversibly between liquid-like and solid-like states in a fraction 
of millisecond when an external magnetic field is applied, and the strength of MR fluids 
to resist shear forces is field dependent. Such characteristics are attractive in many 
engineering applications, such as clutches, valves, brakes, damping devices, pumps, 
etc. However, it is a challenging task to model the dynamics of MR devices, because of 
the inherent nonlinear dynamics of MR fluids.  
Many MR devices work in valve mode of MR fluids and the dynamic behaviour of MR 
fluids flowing through rectangular or circular pipe were widely investigated in recently 
years (Li 2003, Shaju 2008, Grunwald 2008, and Gedik 2012).  To model the dynamical 
velocity distributions of MR fluids in the valve channel, a suitable constitutive model for 
the MR fluids is essential. Several models have been developed to mimic the 
characters of MR fluids in the past two decades. Among the extensive investigations, 
Bingham plastic model has been widely used to describe the behaviour of MR fluids 
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(Nishiyama 2002, Hong 2007). In Bingham model, the fluid is assumed to be a 
Newtonian fluid with a constant plastic viscosity which is defined as the measured 
shear stress versus shear strain rate. Though this model is mathematically simple and 
has a clear physic concept, for cases where fluid experiences post-yield shear thinning 
or shear thickening, the assumption of constant plastic viscosity is not valid. Herschel-
Bulkley model was proposed to capture the post-yield shear thinning or thickening 
behaviour (Widjaja 2008 and Zhang 2008).Nevertheless, similar to Bingham plastic 
model, the model cannot predict the hysteretic behaviour at low shear strain rate and 
the transient behaviors when the loading is dynamical, which is of vital importance  for 
design and control analysis of MR devices.  
In the current paper, a non-convex constitutive model based on phase-transition theory 
is employed to analyze the dynamical behaviour of MR fluids through two fixed plates. 
The dynamical velocity distributions of MR fluid and the plugs in the fluid are 
numerically simulated for two different sinusoidal loadings. For each loading, several 
velocity distributions of the flow at different stages are presented and discussed.  
 
 
2. THE NON-CONVEX CONSTITUTIVE RELATION 
 
The Bingham plastic model is widely used to describe the stress-strain rate relation, 
and was formulated as Eq. 1:  
 

 0 y ,    y                                                  (1) 
 

Where y is the yield stress induced by the magnetic field, 0 is the viscosity of the 
fluids, and  is the shear strain. In this model, the plastic viscosity 0 is simply defined 
as the slope of the measured shear stress versus shear strain rate data, and would 
increase without limit when the shear stress increases. Obviously, this is physically 
impossible and the shear stress cannot increase without limitation.  
In order to overcome such drawback of the Bingham plastic model, the Herschel-
Bulkley model was proposed to describe the post-yield shear thinning and thickening 
behaviour, and was formulated as Eq.2: 
 

n

y K   , y                                               (2) 
 

Where y is the yield stress, K is plastic viscosity of MR fluids, and n is flow behaviour 
index. Compared with the Bingham plastic model, Herschel-Bulkley model is a more 
flexible representation of MR postyield behavior and the shear thinning behavior can be 
captured with appropriately chosen model parameters K and n.  
Though both Bingham plastic model and Herschel-Bulkley model can describe the 
behaviour of MR fluids to some extent, the relation of shear stress and shear strain is a 
one-on-one relation, and the unique hysteretic dynamics is sill not captured. In the 
current paper, a non-convex constitutive relation is employed to investigate the 
behaviour of MR fluids, and the model is formulated as Eq.3: 
 

3 5                                                    (3) 
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Where  is the shear strain; , , and  are material-specific model parameters, which 
are also dependent on the strength of the applied magnetic field. A typical curve of 
such a non-convex relation is as shown in Fig. 1.  
 
 

 
Fig. 1 The nonlinear constitutive relation involving hysteretic behaviour 

 
 
 
Due to the non-convexity of the constitutive relation, bifurcations will be induced in the 
dynamics of MR fluids. The bifurcation points are C and D, and hysteresis loop will be 
resulted, as outlined by points BCED connected by dashed lines with arrows in the 
figure. The hysteretic dynamics of MR fluids can be modeled successfully by modeling 
the switching processes among these bifurcation points. The details about bifurcation 
and hysteresis loops were discussed by Wang (Wang 2006).  
 
 
3. DYNAMICAL VELOCITY DISTRIBUTIONS 
 
In order to develop MR devices working in valve mode, the behaviour of MR fluids 
flowing through two parallel plates are widely examined. In most cases, Bingham 
plastic model or Herschel-Bulkley model were employed as the constitutive relationship, 
and MR fluids were assumed working in the post-yield region. With such an assumption, 
the quasi-steady flow at constant loading conditions was investigated, and then a plug 
with constant thickness was demonstrated. However, none can capture the dynamical 
behaviour of MR fluids under dynamical loading conditions, because of the intrinsic 
limitation of constitutive models mentioned in the above section. To model the 
dynamics of MR fluids, the constitutive model should be able to capture the behaviour 
of both pre-yield and post-yield regions. Furthermore, the hysteretic dynamics should 
also be embedded in the constitutive relationship, which can be done by employing the 
proposed non-convex constitutive relationship of MR fluids.  
In the current paper, the dynamical behaviours of MR fluids flowing through two parallel 
plates, as shown in Fig.2, are investigated under two sinusoidal loadings. In the present 
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study, the upper and bottom plates act as magnetic poles, and a linear pressure 
gradient is introduced to create the flow in valve mode. An external magnetic field H is 
applied and the field strength is assumed to be uniformly distributed.  
 

 
Fig. 2 A two parallel plate model 

 
 
 
The flow between the plates is one-dimensional and should satisfy the principle of 
momentum; the governing equation is presented below as Eq. 4.  
 

u p

t y x

   
  

  
                                                    (4) 

 
Where  is the mass density,  is the shear stress and p/x is the pressure gradient. 
The non-convex constitutive relationship can be reformulated as Eq.5.  
 

3 5u

y
  

  


                                               (5) 

 
By solving Eq.4 and Eq.5 simultaneously with the nonslip boundary conditions u(0)=0 
and u(d)=0, the velocity distributions can be well simulated.  
One can easily see from Eq.4 and Eq.5 that the system is modeled by two 
simultaneous first order differential equations and the dynamical velocity distributions is 
regarded as the response of a nonlinear dynamical system to external loadings. The 
velocity distribution is determined by the pressure gradient p/x and the values of 
model parameters  ,  and .  
To validate the differential model given by Eq.5 for the dynamical velocity distributions 
of MR fluids in valve model, a set of appropriate chosen coefficients with hysteresis 
embedded are employed for numerical experiment. In this study, model parameters 
used for simulations are as following: =8.007,  =21.50, =21.22, which were 
estimated from the experimental data of the dynamics of a MR damper with hysteretic 
behaviour (Wang 2006). The mass density  is set to be 1.The pressure loadings are 
p/x= sin(2t), and p/x=sin(4t), respectively. The simulated results are as shown 
in Fig. 3 and Fig 4, respectively.  
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(a)                                                           (b) 

 

 
                                       (c)                                                            (d) 
 

 
                                   (e)                                                                (f)  

 
 

Fig. 3 The dynamical velocity distributions when p/x=sin(2t), 
 (a)-(b) the 1st period, (c)-(d) the 10th period, (e)-(f) the 100th period 
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                                    (a)                                                             (c)  
 

 
                                      (c)                                                                (d)  
 

 
                                      (e)                                                                 (f) 
 

Fig. 4 The dynamical velocity distributions when p/x=sin (4t), 
 (a)-(b) the 1st period, (c)-(d) the 10th period, (e)-(f) the 200th period 
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The model is a real dynamical one, because the derivative of velocity with respect to 
time is explicitly involved in Eq. 4; therefore, the transient behaviors of the flow are 
naturally captured. From Fig. 3 and Fig. 4, one can see that a plug flow predicted both 
by Bingham plastic model and Herschel-Bulkley model are captured by the proposed 
differential model. Nevertheless, the thickness of the plug flow is not stable at 
dynamical loadings, especially at early periods. This can be explained by the fact that 
thickness of the plug flow is determined by the relative motion between the outmost 
particle layers. For the first half of the first period, the plug is relatively thick, but the 
plug thickness would decrease when the pressure gradient p/x is reversed, because 
the relative motion is much greater. The simulated velocity distributions are not 
symmetrical at the beginning due to the inertial effect; however, after a transit process 
when the inertial effect becomes much weaker, the simulated velocity distributions 
would reach a symmetric state, as shown in bottom of Fig. 3 and Fig.4. Hence the 
dynamical behaviors in both stable and transit stage can be well predicted by the 
proposed model. 
 
 
CONCLUSIONS 
 
In the current paper, the dynamical velocity distributions of MR fluids working in valve 
mode are investigated mathematically. Details of the simulated results for two 
sinusoidal loadings are presented.  It is shown that the proposed differential model can 
well predict the dynamical behaviors of MR fluids in the valve mode, including the 
transient behavior when the fluids are subjected to sinusoidal loadings, which is 
important for system design and control analysis in real applications where transient 
behavior is important. 
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