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ABSTRACT 
 

Structural strain responses of a jacket-type offshore structure are analyzed and the 
prediction model is constructed based on the neural networks technique using long-
term measurement data. Uldolmok tidal current power plant structure under severe tidal 
environments is utilized as an example structure. From the measurement data during 
normal operation, it is observed that strain responses are obviously fluctuated with M2 
and M4 tidal constituent periods and also with relatively short period of about 11 min 
due to the peculiar tidal characteristics in the Uldolmok strait. The neural networks 
based prediction model is also constructed for the signal-based structural health 
monitoring system, and the predicted strain responses are well coincident with the 
measured data. 

 
1. INTRODUCTION 
 

Jacket-type offshore structures are exposed to high levels of external loads such as 
waves, wind, earthquakes, ship-berthing impacts, and many kinds of operational loads. 
Moreover, maintenance, repair, and rehabilitation works for offshore structures are 
much more difficult than for large land-based infrastructures due to the difficulty of 
access and the inherent characteristics of offshore harsh environments. Therefore, 
preventative management is very important for achieving a sufficient level of structural 
safety and operational serviceability for offshore structures, and structural health 
monitoring (SHM) systems with reliable sensors can play an important role in 
preventative management (Yi et al 2013). 

In this study, static strain responses of a jacket-type offshore structure are 
investigated in light of environmental changes, mainly tidal variations. The results can 
be a useful public source of fundamental information for a structural health monitoring 
system for jacket-type offshore structures, especially in high tidal current environments. 
The neural networks based prediction model is also constructed for the signal-based 
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structural health monitoring system, and the predicted strain responses are well 
coincident with the measured data. 
 
2. STRAIN MEASUREMENT FOR A JACKET-TYPE OFFSHORE STRUCTURE 
 

2.1 Target Structure and Measurement Setup 
Korean south-west coast has been considered as a highly attractive candidate for 

power generation from tidal currents for a long time. Among the possible sites, the 
Uldolmok Strait is known as the most promising site owing to the distinctive tidal 
currents with very high speeds up to 4-6 m/sec. Recently the Uldolmok tidal current 
power plant (TCPP) was built as a pilot plant to promote research and development 
investment and speed up the commercialization of TCPPs (KORDI 2011). Uldolmok 
TCPP is located between Jindo Grand Bridge and Byeokpa Port in the east-west 
direction and also between the towns of Jindo and Haenam in the north-south direction, 
as shown in Figs. 1 and 2. Uldolmok TCPP was designed, fabricated, constructed, and 
operated according to the design guidelines for offshore steel jacket platform structures, 
in order to maintain the structure safely and economically under very high levels of tidal 
current loading. It is nevertheless very important to monitor structural responses to 
ensure structural integrity and also to establish load and response databases for further 
design of a commercialized TCPP farm. 

The Uldolmok TCPP monitoring system tracks three categories of data: (1) power-
related data including rotational speed and torque at the side of turbine; (2) structural 
responses including strain, acceleration, and dynamic tilts; and (3) environmental data 
including tidal current and temperature. This study focuses on the utilization of strain 
data for investigating the structural behaviors at the bottom of this jacket structure. 

8 strain gauges were instrumented at the bottom part of jacket legs (i.e. DL-18m) by 
referring design report for Uldolmok TCPP as shown in Fig. 3. The strain gauges were 
attached when the structure was fabricated in the land-based working place at Byeokpa 
Port and they are protected by specially designed external casings from floating objects 
in the strait.  
 

Fig. 1 Location of Uldolmok TCPP
 

Fig. 2 Jacket-type Uldolmok TCPP
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Fig. 3 Installation Locations of Strain Gauges 

 
2.2 Strain Measurement Data 
Fig. 4 shows the measured static strain data for three days from September 5 to 7, 

2010 with tidal current speed and height. From the measurement data, it is observed 
that the strains in flood tides is relatively bigger than those in ebb tidal condition, and 
this is caused by the different characteristics in tidal flow in flood and ebb tides. As 
shown in this figure, the tidal current speed is up to about 1.6 m/sec in flood tides while 
the speed is just up to about 1 m/sec in ebb tides. This distinctive characteristic is due 
to the unique geological and bathymetric features in Uldolmok Strait; i.e. the tidal 
current in flood tides flows uniformly into the narrowest channel section in this strait 
while the tidal current bypassed just after the narrowest channel section flows out 
mainly along the center line in strait. It is also observed that the measured strains in still 
water conditions (i.e. no tidal current flow) are not the same; i.e. fluctuated as shown in 
the upper figure in Fig. 4, which is caused that there are some flowing tidal current 
components along the depth even the surface tidal speed is measured as zero at the 
measurement point. 

From the above Fig. 4, it can be also observed that there is a fluctuation in strain 
data with a relatively short period. For more quantitative evaluation of this fluctuation 
phenomenon, the spectral analysis is carried out to identify the period of this fluctuation 
using long-term measurement data. Fig. 5 shows the spectral components of the 
measured strain data for six months from April 1 to October 1, 2011. It can be easily 
observed that the static strain data fluctuated with constant cycles of 1.343ⅹ10-3 
cycles/min and 2.688ⅹ10-3 cycles/min, which corresponded to periods of 12.412 hours 
and 6.206 hours, respectively. These values are very close to the periods of modal 
properties (Yi et al 2013) and also with the M2 and M4 tidal constituent periods (i.e. 
12.42 hours and 6.21 hours). From the spectral analysis results using static data in 
flood tides, it can be observed that there is fluctuating components with a relatively 
short period of 11.25 min, and this unusual periodic component can be also observed 
as short duration fluctuation in Fig. 4, and this phenomenon is due to the bottleneck 
feature which can be observed in a very narrow channel like the Uldolmok Strait. 
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Fig. 4 Measured strain data from September 5 to 7, 2010  

(● denotes the still water condition) 
 

 

(a) Spectra for long period components (b) Spectra for short period components 
Fig 5. Spectral analysis for strain measurement data 

 
2.3 Strain Prediction Model Using Neural Networks for Signal-Based Monitoring 
It is generally required to build an appropriate strain prediction model for successful 

model-based or signal-based SHM system. Recently many researches are being 
carried out to develop signal-based SHM methods as well as model-based methods 
such as model updating techniques. In the cases of model-based methods, it is 
available to estimate the damage type, location and severity as well fundamentally 
based on the quantitative inverse analysis using numerical simulation model, however it 
should be also noticed that it is very difficult to consider various different boundary 
conditions, external loading condition, and also non-structural members in the 
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numerical model, and they act as modeling errors in these methods. On the contrary, it 
is possible to detect the time of damage occurrence and damage locations by looking 
at the abrupt changes in the measurement strain responses without consideration of 
modeling errors in the cases of signal-based methods. However, it is also noticed that 
the reference (i.e. intact or baseline) signal is necessary to detect the abrupt changes 
due to damage and also environmental effects due to loading and temperature 
changes need to be studied forehand for successful strain signal-based SHM. 

For the construction of fundamental background of signal-based SHM using 
measured strain data, the neural networks model is utilized to predict the oncoming 
strain in this study. Tidal information including tidal current speed and tidal height and 
strain information for the past time from  mi N  to i  are used as input data, while the 

strain for the future time step of ( 1)i   is used as output data to be predicted for multi-

layered back-propagation neural networks as shown in Fig. 6. In this figure, mN  
represents the model order, which is an equivalent value with the model order in an 
autoregressive model (Sohn et al 1999) given as  
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Fig. 6 Strain Prediction Model Using Neural Networks 

 
10 different models are introduced with 0,1,2, ,9mN    to investigate the effect of 

past data. The model order for the neural network model 1 (i.e. NN model 1) is set as 9, 
and the model or for the NN model 10 is set as 0, which means that the NN model 1 
uses the longest time series (i.e. 10 time step data) while the NN model 10 uses the 
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shortest time series (i.e. just 1 time step data). Therefore the number of input data are 
simply given as 30, 27, …, 3 for NN models 1, 2, …, 10, respectively. Two hidden 
layers are used herein and the numbers of nodes in the first and second hidden layers 
are specified as 20 and 10, respectively. Then the total numbers of synaptic weights 
(i.e. unknowns to be decided by training) are 841 (= (30+1)x20 +(20+1)x10+(10+1)x1) 
and 301 (= (3+1)x20+(20+1)x10+(10+1)x1) for the NN models 1 and 10, respectively. 
For training NN models, 4000 training patterns are prepared using the measured data 
from September 5 to September 7, and 3100 data sets are used for the testing patterns. 
It is notable that the number of training patterns (i.e. 4000) is reasonable in the sense 
that the number of training patterns is about 5 times more than the number of synaptic 
weights (i.e 801 in the case of the NN model 1). Generally twice of the number of 
synaptic weights is recommended as the minimum required number of training patterns 
to build a neural network model with reasonable generalization capability.  

Table 1 and Fig. 7 show the training and testing errors in RMSE (root mean squared 
error) unit, and it is found that the training error is gradually increased as model order, 

mN , is decreased and the training error is less than 1  for NN models 1 to 6. On the 
other hand, the testing error is slightly larger than training error and it is grossly less 
than 1.7  for NN models 1 to 6. It is also observed that the strain data measured from 
the sensors SG-NE-W and SG-SE-W are least for both cases, which means that the 
strain data measured from these sensors are more reliable and highly correlated with 
tidal variations. One can decide the NN model 1 is the optimal NN model because the 
training and testing errors for the NN model 1 are least as shown in the figure, however 
in the sense of generalization capability, it is more desirable to use less input 
information when the number of available training patterns is limited like this study. 
Therefore the NN model 6 with 4mN   is decided as the optimal NN model herein. 

 
 

Table 1. Estimation Errors of Neural Networks Model 
NN Model ID 1 2 3 4 5 6 7 8 9 10 

Nm
1) 9 8 7 6 5 4 3 2 1 0 

Number of Input Data 30 27 24 21 18 15 12 9 6 3 

SG-SE-W trainingE  0.642  0.646 0.664 0.684 0.706 0.709 0.746  0.771  0.855 1.031 

testingE  1.581  1.676 1.577 1.704 1.716 1.496 1.796  1.544  1.621 1.911 

SG-NE-W trainingE  0.530  0.536 0.553 0.566 0.575 0.583 0.590  0.641  0.689 0.777 

testingE  1.240  1.314 1.281 1.286 1.308 1.288 1.261  1.303  1.520 1.538 

SG-NW-E trainingE  0.917  0.929 0.943 0.959 0.975 0.998 1.020  1.064  1.136 1.213 

testingE  1.511  1.527 1.549 1.545 1.534 1.612 1.609  1.606  1.628 1.863 

SG-SW-E trainingE  0.531  0.532 0.544 0.570 0.574 0.584 0.598  0.638  0.684 0.779 

testingE  1.260  1.274 1.257 1.308 1.280 1.274 1.268  1.330  1.474 1.568 

SG-NE-S trainingE  0.852  0.848 0.878 0.907 0.914 0.944 0.985  1.012  1.131 1.426 

testingE  1.490  1.509 1.508 1.561 1.516 1.560 1.578  1.613  1.808 2.181 
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(a) Training Errors (b) Testing Errors 
Fig 7. Training and Testing Errors of Neural Networks Based Strain Prediction Models 

 
Fig. 8 shows the measured and predicted strain time histories and it can be obviously 

observed that the predicted strains are quite well coincident with the measured data 
and the estimation errors in the period for testing data sets are slightly larger than those 
for training data. It is expected that the performance of the neural network model can 
be enhanced by using more measurement data as training patterns and it is also 
notable that the temperature effect needs to be considered when longer or seasonal 
variant annual data are utilized in the further study. By considering the temperature 
effect at the same time, it can be enabled to monitor the structural changes due to 
damage by using the neural network based strain prediction model. 

 

 
Fig. 8 Measured and Predicted Strain Time Series and Errors between Two Data 
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4. CONCLUSIONS 
 

In this study, the structural strain responses were measured for the Uldolmok tidal 
current power plant. In particular, this study focused on the utilization of strain data for 
investigating the structural behaviors at the bottom of this jacket structure and also 
constructing the neural networks based strain prediction model for signal-based SHM 
system. The research also investigated the tidal effects on the modal properties in 
detail. The following conclusions were made from this study:  

First, the measured static strains were also fluctuated and they were found to have 
same periods of 12.42 hours and 6.41 hours which are corresponding with M2 and M4 
periods of tidal components. It was also found that the strains are fluctuated with a 
short duration with 11.25 min of period, which is due to the bottleneck phenomenon in a 
narrow channel.  

Second, the neural networks based prediction model is also constructed for the 
signal-based structural health monitoring system, and the predicted strain responses 
are well coincident with the measured data. 

Even though, it is revealed that the static strain data are highly associated with tidal 
changes and these observations can be very helpful for understanding the structural 
behavior in strong tidal areas, it is still required to investigate the relationship between 
the structural responses and structural damages for a successful SHM system. 
Therefore further studies are being carried out for eliminating these environmental 
effects with temperature compensation. 
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