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ABSTRACT 
 
     Irregular structures are often found to be in danger under seismic action, more such 
than their symmetric counterparts. By using external passive damping devices, such as 
Tuned-Mass-Dampers (TMD), existing structures could be controlled and brought to 
behave within limits of desired performance, thus performance based design (PBD) 
could be efficiently achieved. The authors have previously presented a practical PBD 
analysis/redesign (A/R) procedure for the allocation and sizing of multiple TMDs in 3D 
irregular structures undergoing seismic loadings. This paper modifies this procedure, 
making it more computationally efficient, as well as more cost efficient. It is shown that 
by using the methodology presented herein, a desired performance level is successfully 
targeted by adding near-optimal amounts of mass at various locations and tuning the 
TMDs to dampen several of the structure's frequencies. This is done using analysis 
tools only, and since the formulations are general, and apply to all types of structures, 
the methodology presented is recommended for practical use.  
 
 
1. INTRODUCTION 

 

 Past experience shows that irregular structures are, in general, more seismically 
vulnerable than regular ones, and experience more damage due to earthquakes. 
Reducing the amount of damage the structure experiences following a ground motion is 
of much importance. By using external passive damping devices, existing structures 
could be controlled and brought to behave within limits of desired performance, thus 
performance based design (PBD) could be efficiently achieved. Tuned-Mass-Dampers 
(TMD) have been shown to be able to eliminate most of the steady state motion of a 
linear single degree of freedom system under a harmonic loading of a given frequency, 
if properly tuned (e.g. Den-Hartog 1940; Warburton 1982; Soong and Dargush 1997). 
Using such TMDs for the seismic control of multi degree of freedom buildings with 
multiple modes contributing to their response is still limited. This is due to their tuning 
nature, which may seem to be in contrast with the multi-modal response of structures, 
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in general, and irregular structures in particular, under such loads. The use of multiple 
TMDs for the multi-modal seismic control of buildings may overcome this obstacle 
(Clark, 1998). Thus, adopting MTMDs as means of structural control, might be 
beneficial, as they have some very desirable characteristics such as their simple 
behavior, which is easy to model, their relative low cost and their efficiency in multi-
hazard control (wind and earthquake mitigation).  
 TMDs and MTMTDs (the latter referring to a case where the dampening of more 
than one mode in each direction is targeted) have been previously used in 3D 
structures (Almazan et al. 2012; Jangid and Datta 1997; Li and Qu 2006; Petti and Iuliis 
2009; Lin et al. 2010; Lin et al. 2011; Singh et al. 2002; Ahlawat and Ramaswamy 
2003; Desu et al. 2006 Desu et al. 2007; Lin et al. 1999). Nonetheless, there had been 
no simple, computationally efficient methodology for PBD seismic retrofitting by means 
of MTMDS. The authors have recently presented a simple and practical PBD 
analysis/redesign procedure for the allocation and sizing of multiple TMDs in 3D 
irregular structures (Lavan and Daniel 2013). This paper modifies the procedure 
previously proposed by the authors (Lavan and Daniel 2013), making it more 
computationally efficient as well as more cost efficient. The modified procedure is more 
computationally efficient as there is no need to evaluate mean-square response at 
various frequencies, as required by the previous analysis/redesign procedure 
suggested. In addition, it is more cost efficient as the solution attained is closer to the 
actual optimal solution of the optimization problem considered. Here, the first stage of 
redesign includes redesign of the sum of masses of all TMDs at a specific location, 
based on the RMS response at that location. Thereafter, in the second stage of 
redesign, the masses of TMDs at the same location, tuned to various frequencies, are 
updated based on approximated gradients. Equal gradients were chosen to distribute 
the mass amongst TMDs at the same location so as to simulate a KKT solution (see for 
example, Bazaraa and Shetty 1979) to the optimization problem, promising the solution 
will be near optimum.  
 Using the proposed methodology, a desired performance level is successfully 
targeted by adding near-optimal amounts of mass at various locations and tuning them 
to dampen several of the structure's frequencies. In addition, the proposed 
methodology is general, and therefore suitable for use in all types of structures, 
regardless of the extent of their irregularity, their shape or type. 
 
2. PROBLEM FORMULATION 
 

 2.1 Performance measures  
 High acceleration levels can cause severe damage to nonstructural systems, 
sensitive equipment within the structure, as well as cause discomfort to humans 
occupying the buildings. Under these circumstances, reduction of acceleration is very 
important. In addition, reducing them can reduce the base-shear and overturning 
moments (Soong and Dargush 1997; Chen and Wu 2001). Also, as will be seen herein, 
reduction of accelerations often leads to considerable reduction of inter-story drifts, and 
therefore structural damage, as well. 
 As for the cost of control, in the case of TMDs, this is determined based on the 
amount of added mass (through direct cost of material, void floor space for the control 
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system, added gravitational forces to the existing structural system). As more mass is 
needed, the solution becomes more expensive, and therefore less cost-effective. 
 
 2.2 Problem formulation  
 The problem is formulated so as to try minimize control forces (masses of all 
dampers) while limiting RMS accelerations (in frequency domain) at peripheral 
locations to limits set by the performance criteria. Accelerations are limited at all 
peripheral locations of all floors, as they are the largest accelerations expected within 
the floor limits. The problem is formulated as: 
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where (mTMD)l,f is the mass of the TMD located at peripheral location l tuned to 
frequency f, RMS

alla   is the allowable RMS total acceleration,   
l

RMS t

px   is the root mean 

square of the total acceleration at location l (the lth term of  t

pxRMS ), and Nlocations is the 
number of locations constrained (=4Nfloors where Nfloors is the number of floors). 

 
3. PROPOSED SOLUTION SCHEME 
 

 The aforementioned optimization problems could be solved using formal 
optimization tools, as has been proposed for the seismic design using other types of 
energy dissipation devices (e.g. Takewaki 2000a; Takewaki 2000b; Takewaki et al. 
1999; Lavan and Levy 2005; Lavan and Levy 2006a; Lavan and Levy 2006b; Lavan 
and Levy 2010). However, those require knowledge and tools that are less familiar to 
practicing engineers. The analysis/redesign solution scheme proposed herein is aimed 
at finding the locations, masses and tuning frequencies of MTMDs that satisfy the 
constraints while reducing the total mass of the MTMDs, thus achieving the goals of the 
performance based design. This procedure is expected to lead to a cost efficient 
solution, that is close to the formal optimal one. 
 

 3.1 Full Resources Utilization Design 

 Design methods that are based on fully stressed characteristics go back to the 
classical design of trusses under static loads, whereby the weight is minimized for a 
given allowable stress. For that problem, it had been widely accepted that the optimal 
design yields a: statically determinate fully stressed design, with members out of the 
design having strains smaller than the allowable. (Cilley, 1900). This has been proven 
in several occasions, using various approaches. Later, Levy and Lavan (2006) 
considered the minimization of total added viscous damping in frame structures 
subjected to ground accelerations while constraining inter-story responses. Their 
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optimal solutions indicated that: "At the optimum, damping is assigned to stories for 
which the local performance index has reached the allowable value. Stories with no 
assigned damping attain a local performance index which is lower or equal to the 
allowable." That is, the optimal solutions having "fully stressed" characteristics. 
 The authors have also proposed a full resources utilization design (FRUD) 
criteria for an efficient design of MTMDs in 3D irregular structures (Lavan and Daniel 
2013). The FRUD criteria were stated as follows: TMDs are assigned only to peripheral 
locations for which the RMS acceleration has reached the allowable value under the 
assumed PSD of input acceleration. In addition, at each location where mass dampers 
are placed, TMDs of a given frequency are assigned only to frequencies for which the 
output spectral density is maximal. When comparing the attained designs to formal 
optimal ones it was seen that while the first part of the statement holds in the optimal 
design, the second part, while leading to very efficient designs (close to optimal), does 
not lead to the true optimum. 
 In this paper, the second part of the statement is modified to lead to designs that 
are closer to optimum while reducing the computational effort required (as different 
frequency domain tools are used). It is postulated that an efficient optimal, or close to 
optimal, selection of locations and sizes of MTMDs in structures, under a stochastic 
ground acceleration input, possesses the following characteristics: TMDs are assigned 
to peripheral locations for which the RMS acceleration has reached the allowable value 
under the assumed PSD of input acceleration. In addition, at each location to which 
TMDs are added, TMDs of a given frequency are assigned only to frequencies for 
which the gradient of the RMS response at that location with response to the TMD that 
mode is set to dampen is most negative. The second part of this statement is based on 
optimality criteria methods that are aimed at satisfying the KKT conditions for optimum 
solutions (see e.g. Bazaraa and Shetty 1979). An assumption on the KKT conditions is 
made- that only one constraint is active at the optimum (i.e. response at a single 
location). While this assumption may not always hold, it seems to lead to results that 
are close to the optimum, even when more constraints are active. Such optimality 
criteria have been used, for the formal optimal design of other types of energy 
dissipation devices, by Takewaki (1997). 
 

 3.2 Analysis/redesign algorithm 

 Solutions to problems, which possess FRUD characteristics, are efficiently 
achieved iteratively using a two step algorithm in each iteration cycle. In the first step 
an analysis is performed for a given preliminary design, whereas in the second step the 
design is changed using a recurrence relationship that targets full utilization of the 
resources. The recurrence relation can be generally written as: 
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where lx  is the value of the design variable associated with the location l, lpi  is the 
performance measure of interest for the location l, piallowable is the allowable value for the 
performance measure, n - the iteration number and P - a convergence parameter. The 
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advantages of the analysis/redesign algorithm include its simplicity, the need to use 
analysis tools only, and the fairly small computational effort that lies in the small 
number of analyses required for convergence. Such analysis/redesign procedure will 
be utilized here to attain full resources utilization designs where the mass, frequency 
and locations of MTMDs within framed structures is to be determined. 

 

 
4. DESIGN METHODOLOGY 

 

             Step 1: An allowable RMS acceleration is chosen. The mass, damping and 
stiffness matrices of the structure are assembled according to the relevant dynamic 
DOFs. Solution of the eigenvalue problem determines the structure's natural 
frequencies and mode shapes. A power spectral density (PSD),  S , for the input 
acceleration is chosen (e.g. white-noise, which gives a constant PSD; Clough-Penzien; 
filtered Kanai-Tajimi PSD (Clough and Penzien 1995 etc.). RMS accelerations under 
the chosen input PSD are computed for each of the structure's DOFs (e.g. using 
Lyapunov's equation, see e.g. Kwakernaak and Sivan 1972), and then transformed to 
peripheral coordinates.   
             Step 2: If for any peripheral coordinate, l, the RMS acceleration obtained is 
larger than the allowable RMS acceleration, MTMDs are added to suppress the 
acceleration produced. Each TMD of mass (mTMD)l,f is assigned with a DOF for its 
displacement relative to the ground. At each location, modeN  TMDs are potentially added, 
to suppress modeN  original frequencies of the structure. 
 The response of each mode could be evaluated based on a SDOF equivalent 
system. For the sake of simplicity, in this work Den-Hartog (1940) / Warburton (1982) 
properties were chosen. Nonetheless, more advanced criteria could easily be used with 
the proposed methodology. In the case of optimal Den-Hartog properties the following 
initial properties are taken for the dampers: 

1. For each peripheral coordinate, the initial mass of all TMDs located at that 
coordinate is taken as certain predetermined percentage of the structure's mass 
(say 1%). It is divided equally between the dampers situated at the same 
location: 
 

     modestructurefl
NM 01.0

,TMDm  (3) 
 
where l represents the damper's location, f represents the mode dampened and 

structureM  is the structure's total mass. The mass ratio  
fTMDμ  of all TMDs tuned 

to frequency f is calculated as the ratio between the effective TMD mass of all 
TMDs tuned to frequency f and the fth modal mass of the structure. This mass 
ratio is defined as: 
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where f is the f
th mode-shape of the bare structure,  originalM  is the bare 

frame's mass matrix, T is the transformation matrix to peripheral locations, and 
  

fTMDmD   is a diagonal matrix with the terms  
fNlocations,:1TMDm  sitting on the 

diagonal. 
2. Each TMD's stiffness is determined according to the frequency of the mode 

which is dampened by the TMD. The frequency is tuned to: 
 

       
fff TMDnTMD 1 μωω   (5) 

 
where  

fnω  is the frequency f  to be dampened. The compatible stiffness is: 

 
       2TMD,TMD,TMD fflfl

ωmk   (6) 

 
3. Each TMD's damping ratio is determined according to: 
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and the matching damping coefficient: 
 

        
ffflfl nTMD,TMD,TMD 2 ωξmc   (8) 

 
            Step 3: The mass, damping and stiffness matrices of the damped frame are 
updated. Peripheral RMS accelerations are then reevaluated.  
             Step 4: TMD's masses are re-determined using two stages; the total mass of 
all dampers located at a given location is first determined. This is followed by the 
distribution of that mass between all TMDs at that location, having various tuning 
frequencies. Following the change in mass, the stiffness and modal damping ratio of 
each TMD are also updated while keeping the Den-Hartog principles intact, using Eqs. 
(5) - (8). The two-stage analysis/redesign procedure is carried out iteratively until 
convergence, in the following way: 
 Stage 1: The first stage of redesign includes evaluation of the total mass of 
TMDs at each location, promising the existence of the first part of the postulate. This is 
formulated using: 
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where (·)

(n) is the value at iteration n,   
l

n 1

totalTMD,

m  is the total mass of all dampers at 
location l, and P is a constant which influences the convergence and convergence rate. 
A large P will result in a faster but less stable convergence of the above equation. 
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Based on the authors' experience, a P in the range of 0.1-2.0 should be satisfying in 
terms of stability, convergence and fair amount of iterations.  
 Stage 2: In the second stage of redesign, the total mass obtained at each 
location is distributed between Nmode dampers (dampening modes  

fnω ) at that same 
location l, promising the existence of the second part of the postulate, using the 
following: 
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and: 
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where the approximated gradient    
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where the matrix dB  is a transformation matrix, used to assign the TMDs within the 

structure, j is the participation factor of mode j, defined as 
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derived based on an empirical formula obtained using curve-fitting, and is: 
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where   

f
S nω  is the value of the input PSD  S  at the frequnecy  

fnω . 
            In deriving the approximated gradient, it was assumed that, approximately, the 
equations of motion of the damped structure are not coupled when transformed to the 
modal coordinates of the undamped structure, and that the TMDs tuned to dampen a 
certain mode do not affect the response of other modes. For this approximated gradient, 
the forces in TMDs due to the ground's movement are neglected, and it is assumed 
that forces in all TMDs are created only due to the structure's movement.  
 Step 5: Repeat steps 3-4 until convergence of the mass is reached. 
 

 
5. EXAMPLE 

           The following 8-story asymmetric setback RC frame structure (Fig. 1) introduced 
by Tso and Yao (1994) is retrofitted using MTMDs for a deterministic ensemble of 
ground motions exciting the structure in the "y" direction). A uniform distributed mass of 
0.75 ton/m2 is taken. The column dimensions are 0.5m by 0.5m for frames 1 and 2 and 
0.7m by 0.7m for frames 3 and 4. The beams are 0.4m wide and 0.6m tall. 5% Rayleigh 
damping for the first and second modes is used. A 45% reduction of the RMS total 
acceleration in the bare structure is desired. The response is analyzed under a Clough-
Penzien filtered Kanai-Tajimi PSD with parameters fitted to the average FFT values of 
the SE10/50 ground-motion ensemble. The design variables are the locations and 
properties of the individual tuned mass dampers. The dampers are to potentially be 
located in the peripheral frames, where they are most effective, and as the excitation is 
in the "y" direction only, dampers will be assigned only to the peripheral frames 1 (lower 
4 floors), 3 (upper 4 floors) and 4, to dampen frequencies of modes which involve "y" 
and "". 
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Fig. 1 Eight-story setback structure 
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 Step 1: The mass, inherent damping and stiffness matrices of the frame in the 
dynamic DOFs were constructed. The natural frequencies, of the structure were 
determined. The first 10 modes are: 6.88s (x), 7.36s (y,θ), 10.37s (y,θ), 16.04s (x), 
17.88s (y,θ), 22.61s (y,θ), 33.87s (x), 35.96s (y,θ), 43.84s (y,θ), 50.00s (x). RMS 
accelerations of the undamped structure are evaluated under the Clough-Penzien 
filtered Kanai-Tajimi PSD with parameters: 

sec
13rad

g   , 98.0g , 10 S ,  

sec
5.1 rad

f   , and 9.0f . The allowable RMS acceleration for all peripheral 

accelerations was earlier adopted as 55% of the maximum peripheral RMS 
acceleration of the bare frame, giving: 17.16RMS

all a .  
           Step 2: 160 TMDs were added, as a first guess, with initial properties as given in 
Table 1. Those are comprised of 10 dampers each tuned to a different mode frequency 
(of modes related to "y" and "θ") at each of the 16 peripheral locations of frames 1, 
upper 4 floors of frame 3, and frame 4. 
          Step 3: The mass, stiffness and damping matrices were updated. With the newly-
updated matrices and the same PSD input, new peripheral RMS accelerations were 
evaluated. Some of the peripheral accelerations in frames 1, 3 and 4 exceeded the 
allowable. 
 

Table 1. Initial properties of TMDs 
 

No. 
TMD 

Mode to 
dampen 

Initial mass 
(ton) 

Initial natural  
frequency (rad/sec) 

Initial 
damping ratio 

1-16 2 287.1 7.18 9890.2 
17-32 3 287.1 10.20 98977. 
33-48 5 287.1 17.57 989.91 
49-64 6 287.1 22.15 989..9  
65-80 8 287.1 35.42 9897.0 
81-96 9 287.1 42.48 989090 
97-112 11 287.1 56.36 989.22 

113-128 12 287.1 65.92 989..2  
129-144 13 287.1 70.90 98971.  
145-160 15 287.1 92.57 989..0  

 
 
  Step 4: The problem has not converged, and thus the TMDs' properties were 
altered, using the recurrence relations of Eqs. (9) - (11) and P=1 as the convergence 
parameter, giving updated total masses at each DOF. The total mass of each 
peripheral coordinate was then distributed between the 10 dampers at the same 
location using Eqs. (10) and (11). Iterative analysis/redesign as described in Eqs. (9) - 
(11) while altering the mass of the damper is carried out until convergence to allowable 
levels. Upon convergence, the mass of added dampers are shown in Table 3. TMDs 
with non-zero properties were located at frame number 1 (at floor 4), number 3 (at floor 
8) and number 4 (at floor 8), which are the top floors for each part of the setback frame. 
The final properties of each added TMD are shown in Table 2. All assigned TMDs add 
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up to 9.33% of the original structure's mass. For all practical reasons, TMDs with small 
masses can be neglected without effecting the response of the structure.  
 
 

Table 2. Final properties of added TMDs  
 

Frame Floor Mode to 
dampen 

Final 
mass (ton) 

Final stiffness 
(kN/m) 

Final 
damping ratio 

1 4 .  0.50 53.08 0.0375 
3 8 2 75.76 3299.48 0.1763 
3 8 3 5.06 540.53 0.0375 
3 8 5 57.60 1174.66 0.2195 
3 8 8 11.27 1423.66 0.0650 
4 8 11 6.30 2008.83 0.0676 
4 8 2 4.39 191.36 0.1763 
4 8 6 5.35 2639.43 0.0796 

       
           Finally, an analysis of the retrofitted structure yields the peripheral RMS 
accelerations shown in Fig. 2. Also in Fig. 2 the total amount of mass at each floor is 
shown. As can be seen, only locations who had reached the maximum allowable RMS 
total acceleration were assigned with added absorbers, making the solution obtained a 
fully-stressed design. 
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Fig. 2 Peripheral RMS accelerations of structure with final TMDs (continuous or 
dashed) and sum of added masses (dots) (a) frame 1 (floors 1-4) and 3 (floors 5-8) and 

(b) frame 4 . 
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 Fig. 3 presents the convergence of the design variables (masses) and the 
performance measure (acceleration). As can be seen in Fig. 3, convergence is reached 
within about 250 iterations (although practically only 60 iterations are required). 
 The results attained were compared to results attained using formal optimization 
and the previous analysis/redesign-based methodology presented by the authors 
(Lavan and Daniel 2013), and are presented in Table 3. Note that the number of 
iterations/ function evaluations needed is given for comparison-of-convergence-sake, 
however, as different tools are used in each methodology (formal optimization tools 
with sensitivities in the first, frequency response analysis at all frequencies in the 
second, and approximated gradient without full frequency analysis in the third), 
computational effort cannot be compared directly. 
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Fig. 3 Convergence of normalized sum of masses (objective function) and maximum 

normalized RMS acceleration (constraint). 
 
 

Table 3. Results comparison 
 

 % added 
mass 

Number of iterations/ 
function evaluations* 

Formal optimal solution 8.34% ~360 
A/R frequency response 9.78% ~40 

A/R approximated gradient 9.33% ~250 
* Note that as different tools are used in each methodology  computational effort 
cannot be compared directly. 

 
 

6. CONCLUSIONS 
 

           A performance-based methodology for the retrofitting of 3D irregular structures 
was presented. This methodology makes use of an iterative two-step analysis/redesign 
procedure to limit RMS absolute acceleration levels at all peripheral locations to an 
allowable level. A previous methodology for solution of the same problem was 
previously presented by the authors. It used a similar analysis/redesign procedure that 
was based on an equal frequency responses of modes associated with TMDs 
dampening them for the second stage of the redesign step. This led to a solution that 
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was based on analysis tools only, and was fast-converging, but the results were only 
close to optimal (compared to the formal optimal solution of the problem). Herein, a 
different variation on the analysis/redesign method was suggested, so as to still only 
use analysis tools, but based on a modified refined criteria for the second stage of the 
redesign step, that is based on optimality conditions. This approach, while still fast 
converging, led to results that were closer to the optimal results than the first 
analysis/redesign methodology used. In addition, thanks to the approximated 
expression of the gradient, and it's use in the second stage of the redesign step, full 
frequency analysis is not needed in this analysis/redesign variation, as opposed to the 
one originally suggested, making the proposed methodology even more 
computationally effective. 
           Results showed that MTMDs can be used for seismic design of structures, and 
that those can reduce accelerations to a desired level. TMDs tuned to several modes 
and located in different peripheral locations are utilized to obtain effectiveness. The 
results obtained were indeed close to the optimal solution of the problem, as was 
shown. The advantages of the design methodology presented herein include its 
simplicity, relaying on analysis tools only, it's fast convergence, it's generality and 
suitability to many problems, regardless of irregularities, all of which make it applicable 
for use in practical design 
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