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ABSTRACT 
 

Mooring cable system is widely applied in marine engineering to stabilize the floating 
facilities. Traditionally, a mooring cable is divided into finite elements, and the element-
fixed coordinate system is defined by the normal and the tangential vectors of cable 
geometry, and spline function is employed at each simulation step to carry out the 
geometry of cable. Profiting from the expression of hydrodynamic drag forces, a new 
element-fixed coordinate system is developed in this paper. The novelty lies in the 
combination of relative velocity of fluid in constructing the element-fixe1d coordinate 
system. Without the calculation of spline function, this numerical modelling is effective 
and suit for the mooring cable tensioned by buoyancy and own gravity. This modelling 
also simplified the rotational transformation matrix and formulation of hydrodynamic 
drag forces which are primary among external loads. The stiffness and damping of 
cable, apparent weight, hydrodynamic drag forces, effect of added mass, and Froude-
Krylov force are considered during formulating this numerical modelling. Two mooring 
cable modelling developed through this element-fixed coordinate system are verified by 
comparison with the commercial simulation code ProteusDS. One of the modelling 
stands constant external forces, while the other is connected to a spherical buoy which 
provides variable buoyancy. The simulation results from these two numerical modelling 
match well with the results from ProteusDS. 
 
 
1. INTRODUCTION 
 

The mooring cable system is widely used in marine engineering such as oil and gas 
production facility, and offshore floating wind turbine (Driscoll and Nahon 1996 and Zhu 
et al. 2012). Due to the complexity of ocean environment and tremendous size of the 
floating facilities, mooring cables suffer several kinds of forces which can be separated 
into three parts, the first part implements along the geometry of cable, such as material 
stiffness and damping forces; the second part depends on the velocity of fluid with 
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respect to cable, such as the hydrodynamic drag forces which are primary external 
loads; the third part is gravitational forces which is easily carried out in GCS (global 
coordinate system). In order to numerically study the motion of cable, the development 
of numerical modelling of mooring cable starts from inextensible lumped linear 
elements by Walton and Polachek (1960) to extensible lumped-mass-and-spring 
modelling by Huang (1994). The lumped-mass-and-spring modelling discretizing 
mooring cable into finite linear elements obtains widely acceptance in large floating 
platform system and towed system (Kim et al. 2012). It’s known to all that the 
construction of ECS aims at easily expressing internal and external forces acting on the 
cable, and these forces are related to GCS through rotational transformation matrix. 
Traditionally, the ECS is built by the normal and the tangential vectors which are based 
on the continuous curve function (Bauchau, 2010 and Lee et al. 2012). Cubic-spline 
function is widely used for the calculation of ECS as shown in DSA, ProteusDS theory 
and validation (2012). This ECS is convenient in expressing the first part of forces, but 
limited in the expression of the second part of forces such as drag forces. The drag 
forces are divided into three parts by the angle between relative velocity and cable 
geometry. Since this angle has no relation with the ECS, the calculation is complicate 
and increases inaccuracy. A new ECS taking advantage of the expression of 
hydrodynamic drag forces is established in this paper. This new ECS is defined by 
element position vector and relative velocity vector as shown in Fig. 2. The participation 
of element position vector keeps the advantage in expressing forces along cable. While, 
due to the participation of relative velocity vector, the angle between relative velocity 
and cable geometry can be easily converted by the three axial vectors of ECS which 
can be referred in Eq. (19). What’s more, hydrodynamic drag forces are divided into 
two components in the y-z plane. Not only the first part forces but also the second part 
is easily expressed with respect to this new ECS. In addition, the normal and tangential 
vectors are carried out based on the continuous cable in traditionally ECS, while the 
lumped-mass-and-spring modelling is based on discretized assumption. This 
complicates the calculation of rotational transformation matrix in traditional ECS 
(Buckham et al. 2003). The participation of element position vector also simplifies the 
calculation of transformation matrix by Nikavesh (1988). This new ECS is more 
compact and efficient than the traditional ECS. Since the application of cable modelling 
in this paper intends for floating platform, the effects of Froude-Krylov should not be 
ignored as towed marine system by (Buckham et al. 2003) and (Hover et al. 1994) did. 
Deriving from Morison's equation, the effects of Froude-Krylov are also considered 
during formulating of the numerical modelling of the mooring cable by Liu and 
Bergdahl(1996) and Yu and Tan (2006). The stiffness and damping of cable, apparent 
weight, hydrodynamic drag forces, effects of added mass, and Froude-Krylov force are 
considered during building this numerical modelling of mooring cable. Due to the 
limitation of experiment equipments, the accuracy of this new ECS is verified by 
comparison with simulation code ProteusDS of which the cable is based on cubic-
spline lumped mass modelling. Two numerical modelling of cable which stand surface 
waves, currents and external forces are created in this paper. The external forces are 
provided through two ways, one cable stands constant external forces acting on the 
first node and the other stands variable buoyancy which are provided by the 
submerged part of floating spherical buoy of which the bottom is connected with the 
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first node of cable as shown in Fig.1. The simulation results from this numerical 
modelling built by this new ECS match well with the results from ProteusDS. 

 
 

Fig. 1 The coordinate system of mooring cable fastening a floating buoy 
 

2. OCEAN MODELLING 
 

The linear wave theory is used in this paper to express the propagation of surface 
waves by Journeer and Massie (2001). The elevation of free surface wave is the 
superposition of each independent propagation wave as is shown in Eq. (1). The 
parameters of the ocean states for verifying modelling are listed in Table. 1.  

 
                                               cos( )a kx t                                                       (1) 
 

With the assumption of infinity of water depth, the velocities and accelerations of the 
water particles can be carried out according to three axles and are shown in Eq. (2) and 
(3) respectively.  
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where the wave number k  and wave angular velocity   are defined as following, 
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The current is treated as a constant velocity in this paper as shown in Table 1.  
Finally the velocity of the fluid is expressed as Eq. (7) where  [ , , ]w T

g g g gV u v w

                                                       f w c
g g gV V V                                                           (7) 

Table 1. The ocean state 

Parameter Magnitude Unit
x
a

0.35 m/s
y

a
0.6 m/s

x
aT 6.4 s
x

aT 8 s
c

gV [1; 0; 0] m/s

f 1025 kg/m3

2. NEW CABLE MODELLING 

The origin of the GCS locates in still water level (SWL), X-axis directs east while the 
positive of Z-axis is vertical upward, and right handed coordinate system implies Y-axis 
directing north. The mooring cable is discreted into ( 1N  ) finite elements ordered from 
top to bottom, and the mass of cable is lumped on N  nodes. The position of thi  node is 
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expressed by a column vector i
gN  with respect to the GCS. Since the cable fastening 

the floating platform is relative stable compared to the cable towing a marine vehicle, 
R

gV  is defined as the velocity of fluid with respect to the velocity of cable at the element 
center. The construction of ECS is illustrated in Fig. 2. 

Fig. 2 The element-fixed coordinate system of mooring cable 

                                                  1i i i
g g gE N N                                                 (8) 

                                               i f i
g g gV V N i f iV V Ni f iV V Ni f i                                               (9) 

The element velocity R
gV  is carried out by the velocities of thi and ( 1)thi  nodes. 

Notation i
gN iN indicates a derivative of displacement of  thi  node i

gN with respect to time 
t . 
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The three unit vectors of ECS for element are defined respectively in Eq. (11).
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What should be pointed out is the singularity of ix  when 0R
gV  . In order to validate 

the ECS in this special case, the minimum magnitude of f
gV is 0.0001  instead of 0  at 

initial condition. It is acceptable in the real case due to the complexity of ocean 
environment. 

One of the advantages of this definition of the ECS comes out in the expression of 
rotational transformation matrix iA . The unit vectors ix , iy  and iz  are used instead of 
calculating of rotation angles by Huang (1994) and Buckham et al. (2003). 

[ , , ]i i i iA x y z                                                 (12) 

2.1 Material Tension  
Due to the elastic behavior of cable, the inner forces can be divided into material 

tension and the material damping by Huang (1994). The tension i
bT  within thi  element 

exists along iz  and depends on the axial stiffness E  and strain i
b .

2

4
i ic

b b
dT E z

                                                  (13) 

where cd is the diameter of the cable. The axial strain i
b  is defined as following: 

0

0

i i
i
b i

l l
l




                                                     (14) 

where 0
il  means the unstretched length of thi  cable element, while il means the element 

length in current simulation step. 

i iT i
g gl E E                                                      (15) 

2.2 Material Damping  
The material damping within element is defined as a liner function of velocity 

difference between element-terminal nodes along iz axis.

1( )i iT i i
b d g gD C A N N z 1( )i iT i i1i iT i i1( )i iT i i( )1( )1i iT i i1( )1D C A N N zD C A N N z( )D C A N N z( )( )i iT i i( )D C A N N z( )i iT i i( )1( )1i iT i i1( )1D C A N N z1( )1i iT i i1( )1( )b d g g( )D C A N N z( )b d g g( )i iT i ii iT i i( )i iT i i( )( )i iT i i( )( )i iT i i( )D C A N N z( )i iT i i( )( )i iT i i( )D C A N N z( )i iT i i( )( )D C A N N z( ) ( )D C A N N z( )( )b d g g( )D C A N N z( )b d g g( ) ( )b d g g( )D C A N N z( )b d g g( )                                      (16) 

where iTA , the transposed matrix of iA aids to converting the velocity difference from 
GCS to ECS, [0,0,1]Tz   indicates that the material damping exists along z-direction of 
the GSC. dC  represents the damping coefficient depending on the material. 
  

2.3 Hydrodynamic Drag Force 
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The hydrodynamic drag forces are primary forces acting on the cable. Since the 
ECS is constructed by relative velocity R

gV , the advantage is illustrated again in the 
expression of hydrodynamic drag forces i

DF . The vector of hydrodynamic forces is 
divided into two components in the y-z plane with respect to ECS. 

i i i
D z yF F F                                           (17) 

According to the definition, the drag forces are quadratic of relative velocity of fluid 
and are divided into lengthwise and transverse two components as shown in Liu and 
Bergdahl (1996) and Yu and Tan (2006). 
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where nC , is  drag coefficient in transverse and fC  is the friction coefficient of cable with 

the surrounding fluid.   represents the angle between relative velocity R
gV and cable 

element vector iz as shown in Fig. 3, and 0    .  As we know, 

Fig. 3 The drag forces acting on the cable element
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Finally, the i
yF and i

zF are illustrated in Eq. (20) 
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2.4 Apparent Weight  
Since the cable is buoyant in fluid, the apparent weight of the thi cable element i

WF
equals the difference between gravitational force and buoyancy. g means the 

gravitational acceleration vector 0,0, 9.81 T
 . 

( )i i i
w c aF m m g                                              (21) 

where 
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2.5 Added-mass and Froude-Krylov Effects  
Added mass represents the pressure effects due to the relative acceleration 

between wave particles and cable, and Froude-Krylov force represents the pressure 
effects due to undisturbed incident waves. The cable modelling in this paper intends for 
floating platform which is stable compared with towed marine vehicle, so the effects 
caused by incident wave should not be ignored. Deriving from Morison's equation, the 
effects of added-mass and Froude-Krylov are shown in Eq. (23). 

                                                  (1 )i i f i i
A A a g A a gf C m V C m N  i i f i i
A A a g A a gf C m V C m Ni i f i if C m V C m Ni i f i i
A A a g A a gf C m V C m NA A a g A a gf C m V C m N  f C m V C m Ni i f i if C m V C m Ni i f i i  i i f i if C m V C m Ni i f i i
A A a g A a gf C m V C m NA A a g A a g  A A a g A a gf C m V C m NA A a g A a g                                      (23) 

where AC  is the coefficient of added-mass normal the geometric of cable, f
gV fV is the 

acceleration of surrounding fluid particles, and i
gN iN represents the acceleration of cable 

node. Combining the added-mass effects with the mass matrix, the modified mass 
matrix is shown in Eq. (24). 

                                    
0 0
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i i
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And the modified Froude-Krylov force is 
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                                                    (1 )i i f

A A a gF C m V i i f
A A a gF C m Vi i fF C m Vi i f
A A a gF C m VA A a g                                     (25) 

2.6 Governing Equation  
The governing equation is defined according to the N nodes of mooring cable, and 

the forces acting on each cable element are divided equally on the element-terminal 
nodes. The governing equation for nodes except endpoints of cable is defined as below:  

                          
1 1 1 1 1 1
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                           (26) 

The bottom of the cable is assumed to be fixed with seabed in this numerical 
modelling. The first node of the cable is connected with the floating platform which 
provides an external force 1

extF  on the cable. 

3. VERIFICATION 

The verification of this numerical modelling was implemented through two modelling 
which stand the surface wave, current and external forces 1

extF . The differences lie in the 
way in which 1

extF applied. The first modelling uses constant forces while a floating 
sphere is implemented to provide variable 1

extF in the second modelling. The 
displacements of cable nodes and tensions within elements were compared with 
simulation results from ProteusDS. The modelling of mooring cable fastening a floating 
sphere in ProteusDS is shown in Fig. 4.  

Fig. 4 The modelling of mooring cable fastening floating buoy in ProteusDS 

3.1 Constant Forces  

3574



The mooring cable is divided into 10 elements by 11 nodes in this modelling and 
suffers propagation wave in X- and Y-direction, ocean current in X-direction of which 
the value can be referred in Tab. 1. The external forces are applied on the first node of 
cable with constant values 1 [0,0,600]T

extF  . The tension within the first element is shown 
in Fig 5. The mean value of tension from MATLAB modelling is almost the same with 
that from ProteusDS; In addition, MATLAB modelling has slight vibration according to 
the motion of the cable which properly reflects the reality. The displacements of the 
whole mooring cable from MATLAB codes match well with the results from ProteusDS 
which is shown in Figs. 6-8.  

Table 2. The property of cable 

Parameter Magnitude Unit

cd 0.03 m

c 1570 kg/m3

E 2.38e9 N/m2

dC 1.5

nC 1

fC 0.03

AC 1
1
gN [0;0;-2]
N
gN [0;0;-30]

Fig. 5 Tension within the first element 

3575



Fig. 6 The displacement of the first node along X-direction 

Fig. 7 The displacement of the first node along Y-direction 

Fig. 8 The displacement of the first node along Z-direction 

3.2 Spherical Buoy  
The sphere modelling developed in this paper simulates floating platform and 

provides external forces which avoids sinking of cable. The geometry data of the 
sphere is shown in Table. 3. Due to the symmetrical geometry of sphere, the rotation is 
ignored during developing sphere modelling, and the displacement of sphere is carried 
out by the geometrical relationship between sphere and cable. The displacement of 
cable node 1

gN is the same with the bottom of the sphere. Three points a , b and 
c respectively are fixed in the sphere cross-section which cross the center of the sphere 
and is parallel with the SWL. These three points located impartially on the edge of 
concentric circle of which the radius is pR . The symbol a

g , b
g and c

g  represent the 
surface wave elevation at points a , b and c respectively which are illustrated detail in 
Fig. 9. 

Table 3. The property of buoy 

Parameter Magnitude Unit
R 1 m

pR 0.5 m

sM 10 kg
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Fig. 9 Numerical modelling of floating buoy 
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     

     

    

          (27) 

 
 

The position vectors of these three points are carried out with respect to GCS. 
Unitize the axial component of normal vector of this cross-section and represented by 

,[ , ]x y zn n n  which illustrates the direction of buoyancy. 
 

                                                    ,[ , ]
|| ||

x y z

ac bc
n n n

ac bc





                                             (28) 

 
where, 
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3 3
, ,

2 2

3 3
, ,

2 2

T

c a

p p g g

T

c b

p p g g

ac R R

bc R R

 

 

 
  
 

 
   
 

                                        (29) 

 
 

Since the length of wave is much larger than the radius of sphere R , the wetted 
cross curve is simplified as a plane, and the distance from the center of sphere to the 
cross plane SH  is shown in Eq. (30).  
 

1,33 1
( ( ))

2 2

a

x p y p z g gSH n R n R n N R                                     (30) 

 

The submerged volume 
sV is carried out through Eq. (31) with respect to the 

spherical coordinate. 
 

2
2 2 2

0 0 0

1
sin ( )

3

R

sV d d r dr SH R SH
 

                              (31) 

 
where 2 is corner angle of the composed cone. 

 

arccos
SH

R
                                                        (32) 

 
Since this paper focuses on the numerical modelling of mooring cable, the external 

loads acting on the 1st  node of cable is composed by buoyancy and gravitational force. 
Taking advantage of the symmetrical geometry of sphere, the buoyancy always directs 
the center of sphere during the simulation and can be divided into three axial directions. 
The gravitational force is constant and depends on the mass of sphere 

sM . Finally, X-
component, Y-component and Z-component of the external loads 1

extF are shown in Eq. 
(33). 

 
 

                                                 

1,1

1,2

1,3

| |

| |

| | | |

ext s f x

ext s f y

ext s f z s

F V g n

F V g n

F V g n M g











 

                                         (33) 

                                             
This modelling is developed for the validation of variable external loads. The floating 

spherical buoy provides variable buoyancy acting on the first node of the mooring cable. 
This first node of mooring cable is connected with the bottom of the buoy and locates at 
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[0,0,0] initially. The ocean state and the property of mooring cable are the same with 
the first modelling which can be referred in Tables. 1-2. The spherical buoy is 
submerged by the superposition of the wave crests at initial condition and gradually, 
gets stable around the equilibrium position, so the tension vibrates largely at the 
beginning which is shown in Fig. 10. The displacement of buoy in Z-direction also 
achieves maximum near the beginning as shown in Fig. 13. Generally, the
displacements of the first nodes in MATLAB code match well with those from 
ProteusDS as shown in the Figs. 11-13. What’s more, the MATLAB code is more actual 
than ProteusDS in the expression of tension and displacement of cable in Z-direction. 
Especially, the tension is unreasonable around 26 second in ProteusDS as shown in 
Fig. 10. These show the advantages of this new GCS. 

Fig. 10 Tension within the first element 

Fig. 11 The displacement of the first node along X-direction 

Fig. 12 The displacement of the first node along Y-direction 
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Fig. 13 The displacement of the first node along Z-direction 

4. CONCLUSIONS 

In this paper, a new element-fixed coordinate system is developed based on the 
relative velocity of fluid and the geometry of mooring cable. Both the rotational 
transformation matrix and hydrodynamic drags are simplified with this coordinate 
system. This cable modelling considers the stiffness and damping of cable, apparent 
weight, hydrodynamic drag forces, effect of added mass, and Froude-Krylov force. Due
to the limitation of experiment conditions, this modelling was verified by two numerical 
modelling which match well with the results from ProteusDS. The numerical spherical 
buoy is also well developed; the construction method could give reasonable experience 
for the calculation of submerged volume. 
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