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ABSTRACT 
 
     An asymptotic analysis is carried out for laminated composite plate including 
interlayer slips. Based on the formal asymptotic expansion of field variables and the 
scaling of the thickness coordinates, the recursive governing plate equations are 
systematically derived. Obtained solutions via the asymptotic expansion guarantee the 
exact solutions converging to the elasticity solutions. Taking the interlayer slip effect 
into account using through-the-thickness finite element method, calculated warping 
modes show the displacement jump at each interlayers. For numerical results, various 
layups including soft core sandwich plate are considered to demonstrate the validity of 
the present asymptotic approach. 
 
1. INTRODUCTION 
 
     Composite materials have been widely used in various engineering fields due to 
their excellent properties; high strength-to-weight, stiffness-to-weight ratio and 
lightweight characteristics. Especially, composite laminates consist of reinforcing fiber 
and matrix are used as primary loading structures. Due to the anisotropy and 
inhomogeneity of the composite laminates, it is hard to obtain accurate static and 
dynamic behaviors of the multilayered structures. Thus, numerous studies have been 
carried out to analyze and design the laminated composite structures. Comprehensive 
reviews can be found in the surveys. (Reddy 1994, Carrera 2003) 
     Among the various approach, asymptotic method equipped with rigorous 
mathematical foundation is a proper option. Since the method can be mixed with the 
finite element analysis which is a very powerful tool for engineering approach, one can 
carry out an efficient and accurate analysis; the asymptotic analysis of composite 
laminates with finite element formulation can be found in Yu (2002) and Kim (2008, 
2009), the former based on variational asymptotic method, and the latter used formal 
asymptotic method. 
                                                 
1) Graduate Student 
2), 3) Professor 

3937

mailto:spin9900@snu.ac.kr


Difficult subject in analyzing composite laminates is a failure analysis. Due to the 
stress concentration between the layers, delamination is generated and propagates 
along the imperfect region of the multilayered structures. Thus, one needs to predict 
accurate behaviors of composite laminates including interfacial imperfections. Based 
on the higher-order plate theory, Cheng (1996) applied spring-layer model to represent
the weakened interface effect. Also, recently, Kim (2011) developed enhanced first-
order shear deformation model based on the spring-layer model. However, there is no 
research using an asymptotic approach to analyze the composite laminates with 
weakened interfaces. In this study, we developed an asymptotic model for the analysis 
of composite laminates including weakened interfaces. Different from the higher-order 
theories which assume the in-place displacement as a basis function, the asymptotic 
plate model has no assumption except the plate geometry: thinness of the structure. 
Thus, the present asymptotic approach can provide the mathematically rigorous 
analysis model for the prediction of the mechanical behaviors of multilayered 
structures with weakened interfaces. 

2. ASYMPTOTIC FORMULATION 

A laminated composite plate with weakened interfaces is shown in Fig. 1. Firstly, a 
small parameter is defined to be ‘h/a’, in which ‘h’ and ‘a’ represent the thickness and 
characteristic length of the plate, respectively. The coordinates are scaled to apply 
asymptotic expansion method as follows: 

1 1 2 2 3 3, , /y x y x y x   ò  (1) 

The scaled governing equations of linear elasticity are expressed by substituting Eq. 
(1) into the original field equations. 
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Displacement field, stress and strain are asymptotically expanded using small 
parameter. By substituting the expanded variables as shown in Eq. (3) into the field 
equation in Eq. (2), one can derive governing equations of the asymptotic expansion 
method. Details can be seen in the work of Kim (2009). 
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 For the microscopic analysis which is a calculation of through-the-thickness 
deformation modes, displacement field are decomposed into two parts: fundamental 
and warping solutions. The fundamental solution represents the global behavior of the 
plate, and the warping solution is a local deformation of the layered structure. Starting 
from the virtual work principle, the microscopic governing equations can be derived as 
follows: 
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where, the details of Eq. (4) are presented in the work of Kim (2009). In order to 
consider the interlayer slip effect, a spring element is introduced, and the microscopic 
finite element equations is changed as 

(2) * (2)* * (1)
3 0s s s w E   K u f K u F e (5) 

By solving Eq. (5), one can obtain the warping modes of the plate. The macroscopic 
governing equations are the same to those of the asymptotic plate model of the 
perfectly bonded plate. In this paper, deriving the macroscopic equations is omitted, 
and detailed procedures can be seen in the work of Kim (2009). 

3. NUMERICAL RESULTS 

 To verify the proposed asymptotic plate model with weakened interfaces, we 
considered an anti-symmetric ([0/90/0/90]), relatively thick (S=4) and rectangular (b=a) 
composite laminate. The material properties are presented by

25 , 2.5 , 0.25L T LT TT LT TTE E G G v v    (6) 

Double sinusoidal loadings are applied at the top surface of the composite plate, and
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 Fig. 2 In-plane displacement and center deflection of [0/90/0/90] laminate. 
 
the corresponding boundary condition is simply-supported. As shown in Fig. 2, the in-
plane displacement has a jump at the interface of the plate. FAMPA denotes the 
present formal asymptotic plate model, and ‘ZT’ represents higher-order zigzag theory. 
The asymptotic results shows a converging behavior as increasing the order of the 
solution. FAMPA 0th represent the classical Kirchhoff-Love plate model which cannot 
express the interlayer slip effect. The second graph in Fig. 2 shows the center 
deflection of the laminate. The present asymptotic solution correlates well with that of 
zigzag theory. The 6th solution of asymptotic method is in between 2nd and 4th 
solutions. Thus, one can expect that the present asymptotic results will be converge to 
the exact elasticity solution of weakened interface model as the case of perfectly 
bonded composite laminates (Kim 2009). 
 
4. CONCLUSIONS 
 
     In this study, static behavior of composite laminates including weakened interfaces 
was investigated using formal asymptotic method. In the microscopic through-the-
thickness analysis, the spring-layer model was easily applied to the one-dimensional 
finite element model, resulting the jump behavior of the warping distribution. The plate 
equation derived from the three-dimensional virtual work principle was exactly the 
same to that of the original perfectly bonded one. The present results were compared 
to those of higher-order zigzag model, and show the accurate prediction of the 
weakened interface behaviors. The major contribution of the present work is that the 
proposed method can be the benchmark solution to the multilayered structures like 
composite laminates and sandwich plate with weakened interfaces. Since there is no 
exact elasticity solution for the weakly bonded multilayered structures, the present 
asymptotic approach which guarantees the three-dimensional exact solution is an 
efficient and proper way to compare various kinds of analysis models.  
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