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ABSTRACT 
 

     In this paper, the theoretical background of linear constitutive multifield behavior as 
well as the Finite Element implementation are presented. The developed tools enable 
the prediction of the electromagnetomechanical properties of materials and structures 
and supply useful tools for the optimization of multifunctional composites. First, linear 
three-field coupling is presented within the context of a Finite Element implementation. 
Then, a homogenization technique is applied to describe the macroscopic behavior. A 
numerical examples focus on the prediction of the magneto-electric (ME) effect for dif-
ferent composite arrangements.   
 
1. INTRODUCTION 
 
     Multiferroic magnetoelectric materials, which simultaneously exhibit ferroelectricity 
and ferromagnetism, have recently stimulated a sharply increasing number of research 
activities. As novel multifunctional devices, they contain a significant technological po-
tential. These materials are much desired, because of the presence of the interaction 
between electric and magnetic fields. It is important to note, that this interaction ap-
pears as a material property (ME-effect) and is not following from the Maxwell-
equations (EM-Effect). The coupling of magnetic and electrical fields may occur due to 
the physical properties of a crystal or can be artificially produced in a smart composite. 
The application spectra of these materials are novel multifunctional devices, such as 
sensors, transducer, etc… One of the most promising applications is the efficient stor-
age of data in ferroelectric devices controlled by magnetic fields.  
     Nevertheless, after the discovery of this phenomenon, it has become unattended. 
The reason for this is that native multiferroic single-phase compounds are rare and 
their magnetoelectric responses are either relatively weak or occur at temperatures 
which are too low for practical applications. After the discovery of multiferroic compo-
sites the potential of the ME-Effect became larger. Nowadays, it is possible to develop 
multifunctional composites as micro- or nano-structures (e.g.               ). In 
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contrast to the native materials, the multiferroic composites, which incorporate both fer-
roelectric and ferromagnetic phases, typically yield much larger magnetoelectric cou-
pling response at room temperature (Fiebig 2005). Thus, the attention to the multi-
ferroic composites with ME-coupling was increased. 
     In composites the ME-effect is induced by the strain field converting electrical and 
magnetic energies based on the ferroelectric and magnetostrictive effects as shown in 
Fig. 1. 
 
 

 
 
Fig. 1  Magnetoelectric (ME-) effect: coupling between magnetic and electric fields 

in composite materials. The (inverse) magnetostrictive and (in-) direct pie-
zoelectric effects are coupled by deformation of matrix. 

 
2. THEORETICAL FRAMEWORK OF LINEAR CONSTITUTIVE BEHAVIOR 
 
     2.1 Constitutive equations 
     The four Maxwell equations describe all of the phenomena of the classical electro-
dynamics (Jackson 1998): 
 

     ⃗⃗   ⃗⃗ ̇      
     ⃗    ⃗ ̇  

(1) 

  
     ⃗     
     ⃗⃗      

(2) 

 
where  ⃗⃗   ⃗   ⃗   ⃗⃗     and    denote magnetic field, electrical field, magnetic induction, 
electric displacement, electrical current density and specific charge density. The first 
two equations couple electric and magnetic fields in transient systems. However, in 
multifunctional materials the fields are predominantly coupled via the constitutive equa-
tions. 
     The scalar electric and magnetic potentials (    and   ) are motivated from the 
Maxwell equations, Eq. (1), for the electrostatical and magnetostatical case ( ⃗ ̇  ⃗⃗ ̇      : 
 

       
    

       
    (3) 

 
With these definitions, the first Maxwell equations are trivially satisfied: 
 

 ⃗⃗   ⃗                   (4) 

 ⃗⃗                                             𝜀                                             ⃗  
            magnetostriction                                  direct piezoelectric effect 

       inverse magnetostriction                        indirect piezoelectric effect      
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 ⃗⃗   ⃗⃗                  
From here, only the analytical (index) notation is used implying summation and comma 
conventions.  
     With the help of the Eq. (3), the constitutive law of magnetoelectroelasticity is formu-
lated. The relation between the thermodynamic potentials and the fields is obtained 
from thermodynamic analysis. The associated variables, i.e. stresses    , electric dis-
placement    and magnetic induction    are obtained by partial differentiation of the 
thermodynamic potential 
 

 (𝜀        )  (   𝜀            )   (5) 
 
with respect to the independent variables, where 𝜀   denotes the strain. The constitutive 
equations of linear magnetoelectroelasticity are then given by 
 

         𝜀                  

       𝜀                

       𝜀                

(6) 

 
with 
 

      
   

 𝜀   𝜀  
       

   

    𝜀  
       

   

    𝜀  
  

     
   

      
      

   

      
      

   

      
   

(7) 

 
The elastic properties are given by the fourth-order tensor      , whereas the piezoelec-
tric and magnetostrictive properties are denoted by third-order tensors      and     . The 
second-order tensors    ,     and     represent the dielectric, magnetic permeabilities 
and magnetoelectric constants. 
     The constitutive Eqs. (6) describe all phenomena appearing in multifunctional mate-
rials. After the introduction of material coefficients with these equations, it is possible to 
describe the coupling between electrical, magnetical and mechanical phenomena.  
     To solve boundary value problems in a strict formulation, the balance equation of 
momentum has to be considered besides the Eqs. (2)  
 

           ̈    (8) 
 
where again the quasistatic limit is prescribed. 
 
     2.2 Finite Element formulation for the coupled field problem 
     An approximated solution can be obtained by applying the method of finite elements 
(FEM). The application of approximate methods requires the formulation of field equa-
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tions in the weak form. This formulation is obtained e.g. from the generalized Hamil-
ton’s variational principle: 

    ∫(        

  

  

∫       

  

  

     (9) 

  
where   and     denote kinetic energy and virtual work of the applied external forces. 
The weak formulation according to Eq. (9) is equivalent to the differential equations (2) 
and (8) as well as natural boundary conditions. For the static case, the generalized 
Hamilton’s variational principle yields the principle of minimum of the total potential en-
ergy:     (     )    with          and     . It is important to note, that 
the inner and the external potentials    and    consist of mechanical, electric and 
magnetic parts. With the help of these equations, the field equations in the weak form 
are given as follows: 
 

∫(               
   

(  

      
     

 ∫  ̃    

(   

    ∫  ̃ 
      

(   

    ∫  ̃ 
    

(   

        
(10) 

 
Volume charges    and forces    are neglected in Eq. (10).  ̃ 

   and  ̃ 
  are specific 

surface charges, where  
 

 ̃ 
        (11) 

 
is formally following the definition for the electric charges without the physical presence 
of magnetic charges. 
     The calculation of finite element matrices is a very important part of FEM solution. 
Thereby, the most general and efficient technique is the application of isoparametric 
finite elements (Bathe 2006) which is applied here. Besides the weak formulation of 
magnetoelectroelastic field Eq. (10), the constitutive Eqs. (6) are required. The approx-
imation of physical fields is performed within each single element with the following in-
terpolations 
 

   ∑   
 

 

   

  
  [  ]{  }  

    ∑    
 

 

   

      [   ]{ 
  }  

   ∑   
 

 

   

   
  [  ]{  } 

(12) 
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where   is the number of nodes per element and [  ], [   ] and [  ] are isoparametric 
shape functions. After application of the fundamental lemma of variational calculus, the 
separated contributions to the generalized stiffness matrix (mechanical, electric, mag-
netic and the different mixed expressions) are obtained: 
 

[   ]  ∫ [  ]
 [ ][  ]   

(  

 [       ]   ∫ [   ]
 [ ] [   ]   

(  

   

[     ]   ∫ [  ] [ ] [  ]   

(  

  

[     ]  ∫[  ]
 [ ] [   ]   

(  

 [    ]  ∫[  ]
 [ ] [  ]   

(  

   

[      ]   ∫[   ]
 [ ][  ]   

(  

  

(13) 

 
Here, [   ] and [  ] relate the scalar potentials at nodes to the electric or magnetic 
field at the integration points. Of an element [  ] relates the mechanical displacement 
field to the strain field (Bathe 2006). 
     The calculation of the generalized stiffness matrix requires numerical integration, e.g. 
the GAUß quadrature. Based on the above equations, the boundary value problem is 
formulated as an algebraic system of equations [ ]{ }  { }: 
 

[

[   ] [     ] [    ]

[     ] [       ] [      ]

[    ] [      ] [     ]

] {

[  ]

[   ]

[  ]

}  {

[  ]

[  
  ]

[  
 ]

}  (14) 

 
where       

   and   
  denote the forces and generalized charges at nodes. The stiff-

ness matrix as well as the displacement and the force vectors thus include mechanical, 
electric and magnetic contributions. Again, it is noted that “magnetic charges”   

  are 
auxiliary quantities with no physical interpretation. 
 
     2.3 Homogenization procedures 
     Goal of the simulation is the investigation and finally optimization of multifunctional 
composites. Therefore, homogenization techniques need to be applied to describe the 
macroscopic behavior. On the macroscopic scale, the relations between the effective 
material tensors and the averaged fields are formulated as 
 

〈   〉       
 〈𝜀  〉      

 〈  〉      
 〈  〉  

〈  〉      
 〈𝜀  〉     

 〈  〉     
 〈  〉  

〈  〉      
 〈𝜀  〉     

 〈  〉     
 〈  〉  

(15) 
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To calculate the effective material tensors, we apply among others a generalized VOIGT 
approximation which is attended by the following boundary conditions: linear displace-
ments (constant strains) and analogously constant electric and magnetic field 
 

   𝜀  
                   𝜀  

         

       
                     

         

      
                     

         

(16) 

 
Thus, it follows: 

 
〈𝜀  〉  𝜀  

  〈  〉    
  〈  〉    

     (17) 
 
Consequently, constant strains, electric and magnetic fields are applied at the bounda-
ry of the RVE. 
     Following the prodecure outlined above, on the one hand normal displacements at 
constant  - and  - fields, electric potentials at constant displacements and  -fields or 
magnetic potentials at constant displacements and  -fields are imposed on a RVE. On 
the other hand, tangential displacements at constant  - and  -fields are imposed in 
order to calculate shear components. Subsequently, resulting stresses,  - and  -fields 
are calculated and all effective material constants are determined. Their definitions be-
come obvious from Eqs.(6) and (7), in particular which quantities have to be kept con-
stant by an appropriate choice of boundary conditions: 
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(18) 

 
The constant fields are written behind the vertical bar. Due to the integrability condition, 
there are two alternative ways to define and finally calculate coupling coefficients. 
Since magnetic fields are free of sources and free electric volume charges are com-
monly assumed not to be present in a dielectric material (    ), the balance equa-
tions (2) and (8) can be specified as 
 

              ⃗⃗         ⃗                (19) 
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where inertia effects and volume forces have been neglected likewise. Thus, stresses, 
electric displacements and magnetic flux on the boundaries are equal to the respective 
average fields within the domain  . Therefore, Eqs. (17) and (18) supply relations for 
the effective properties of the homogenized medium: 
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(20)

For example, the magnetoelectric tensor can be calculated either from the ratio be-
tween the averaged dielectric displacement and the applied magnetic field or from the 
averaged magnetic induction and the applied electric field as shown in Eq. (20). The
corresponding magnetoelectric constant in   -direction     (same with             
           ) is calculated as shown in Fig. 2. 

Fig. 2  Boundary conditions for the calculation of the effective magnetoelectric 
tensor 

2.4 Results of the homogenization
We consider three different composites. The first consists of an elastic matrix which 

is dielectric and diamagnetic with embedded piezoelectric and magnetostrictive parti-
cles. The second composite has a piezoelectric matrix with embedded magnetostrictive 
particles and the third composite has a magnetostrictive matrix with embedded piezoe-
lectric particles. The magnetoelectroelastic moduli of the three phases are presented in 
Table 1 (Tang & Yu 2009).
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Table 1. Material properties of               , and epoxy 
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The corresponding effective magnetoelectric constants in   -direction are calculated by 
using the homogenization technique described in section 2.3. This constant is obtained 
as the arithmetical average of the two approaches described in the Eq. (20). For all cal-
culations, the same geometrical model has been used, just the material allocations are 
different. Our result is that the second composite (see Fig. 3) has the largest magne-
toelectric coupling constant of    

           [     ] (                    ).  
 
 

 
 

Fig. 3  Magnetoelectric particle composite (matrix:        and particles:        ) 
left: electric displacement and right: magnetic induction 
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The other effective constants are calculated likewise. The results are presented in Ta-
ble 2. 
 

Table 2. Effective material properties of the                      composite 
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     Now, if we make calculations for the second composite with all effective material 
constants, a magnetic induction of one Tesla yields an electric field strength of      
    . Comparing this result to the one for the inhomogeneous composite, the devia-
tions along the boundary of the RVE are plotted in Fig. 4. The average deviation is not 
larger than      .  
 
 

 
Fig. 4  Relative ratio of the electric field in   -direction between the           

           composite and the body with effective properties 
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4. CONCLUSIONS 
 
     In this work were derived field equations, constitutive relations and the stiffness ma-
trix of multifunctional materials. A subroutine USER-Element (UEL) for linear magneto-
electroelastic behavior has been developed and implemented in a commercial FEM 
software ABAQUS. Further, were performed calculations with magnetoelectoelastic 
boundary value problems in association with homogenization procedures. The next 
step of our work is to include a nonlinear ferromagnetic and ferroelectric behavior in to 
the model. The goal is to evaluate mechanical stresses during the multifield poling pro-
cess and to optimize the composite with respect to functionality and strength. 
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