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ABSTRACT 
 

 Finite element (FE) method has been successfully applied to analysis of equilibrium 
protein dynamics because of its high accuracy and computational efficiency compared 
with the methods based on the full atomistic force field. However, even using the FE 
method, analysis of macromolecular protein assemblies is still challenging due to its 
huge number of DOFs. In order to handle this problem, we here apply the enhanced 
Craig-Bampton (CB) method that was a recently developed, robust FE model reduction 
technique. To illustrate, its performance is investigated by analyzing the molecular 
structure of the Middle East Respiratory Syndrome coronavirus (MERS-CoV) 3C-like 
protease.  
 
 
1. INTRODUCTION 
 
The coarse-grained modeling techniques such as elastic network model (ENM) (Tirion, 
1996) and finite element (FE) model (Bathe, 2008, Kim, 2011) have been successfully 
used for analysis of supramolecular protein assemblies. In particular, FE modeling 
approach offers an efficient way of incorporating the effect of externally applied 
mechanical forces or surrounding media (Bathe, 2008, Kim, 2011) as it models the 
molecular surface explicitly.  
 
Nevertheless, analysis of supramolecular protein assemblies is still challenging even 
with these coarse-grained modeling approaches due to its huge number of DOFs. To 
address this problem, we recently proposed an automated model reduction procedure 
(Kim and Kim, 2015) based on component mode synthesis (CMS) that is a popular 
reduced order modeling (ROM) technique in structural dynamics community (Craig and 
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From the computed molecular surface, we generate the three-dimensional 
volumetric finite element model using 4-node tetrahedral solid elements as shown in 
Fig. 1C, which is done using a commercial finite element analysis program ADINA 
version 9.0.7 (ADINA R&D, Inc., Watertown, MA, USA). 
 
     Finally, the constructed finite element model is partitioned into a number of 
substructures to be used for application of the enhanced CB method (Fig. 1D). We use 
METIS version 5.1.0 (http://glaros.dtc.umn.edu/gkhome/metis/metis/overview/) for 
partitioning of the model. 
 
 

2.2 Enhanced Craig-Bampton method 
 

The original finite element model of protein is partitioned into small substructures 
using METIS as in Fig. 1D, and then the matrices of the equation of motion can be 
expressed by 
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where Μ  and K  are the mass and stiffness matrices, respectively, and x  is 
displacement vector. Subscripts s , b  and c  denote substructural, interface 
boundary and coupling terms, respectively.  
 
In the CB method, the displacement vector x  can be approximated with the 
transformation matrix 0T  as follows  
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in which bI  is an identity matrix of interface boundary, and dΦ  is a matrix consisting 

of the substructural dominant normal modes which are the low frequency normal 
modes obtained from the substructural eigenvalue problem. It should be noted that the 
low frequency normal modes are usually associated with important dynamic 
characteristics such as the conformational change of proteins.  
 
In the CB method, the reduced matrices are constructed using 0T  as  
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In the enhanced CB method, the enhanced transformation matrix 1T  is newly derived 
by considering the residual substructural mode as  
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Due to compensation of the residual substructural modes, the reduced matrices in Eq. 
(6) are much more accurate than the reduced matrices in Eq. (3). 
 
 
3. RESULT AND CONCLUSION 
 

In this section, we investigate the performance of the enhanced CB method in 
comparison with the original CB method. The approximated eigensolutions for the 
structure of Middle East Respiratory Syndrome coronavirus (MERS-CoV) 3C-like 
protease (RCSB Protein Data Bank, http://www.rcsb.org/, ID: 4WMF) (Needle and 
Lountos, 2015) are calculated by solving the eigenvalue problems using the reduced 
matrices in Eqs. (3) and (6). 

 
Figs. 2A and 2C represent the eigenvalues and the relative eigenvalue errors 

obtained using the original and enhanced CB methods, respectively. These results 
clearly show that the enhanced CB method is more accurate than the original CB 
method. In addition, RMSFs (Root-Mean-Square-Fluctuations) at alpha-carbons are 
presented in Fig. 2C, which illustrates a high correlation between the results calculated 
using the original and enhanced CB methods. 
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